Piezonuclear Fission Reactions Triggered by Fracture and Turbulence in the Rocky and Gaseous Planets of the Solar System



Evidences from the planets of the Solar System are presented and interpreted in the light of piezonuclear fission reactions. In particular, results coming from different investigations are reported for the crust of Mars. They were made available by NASA space missions during the last 15 years. The concentration increment in certain elements (Fe, Cl, and Ar) and the corresponding decrement in others (Ni and K), together with neutron emissions at Mars largest faults, should be considered as directly correlated phenomena. The findings presented provide a clear evidence of how seismic activity has contributed to the Red Planet’s compositional evolution. Analogous evidences regard Mercury, Jupiter, and the Sun itself. The major compositional variations are interpreted according to piezonuclear fission reactions triggered by earthquakes in rocky planets and by storms in gaseous planets as well as in our star. These conjectures, which were originated from the analysis of geological and geophysical evolution of the Earth’s crust, are based on recent evidence of neutron and alpha particle emissions during brittle fracture experiments carried out on inert non-radioactive rocks (granite, basalt, magnetite, marble).


Chemical evolution Fracture Turbulence Rocky planets Gaseous planets Solar system 


  1. 1.
    Taylor SR, McLennan SM (2009) Planetary crusts: their composition, origin and evolution. Cambridge University Press, CambridgeGoogle Scholar
  2. 2.
    Hahn BC, McLennan SM (2006) Gamma-ray spectometer elemental abundance correlation with Martian surface age: implication for Martian crustal evolution. Lunar Planet Sci XXXVII:1–2, Google Scholar
  3. 3.
    Mitrofanov I et al (2002) Maps of subsurface hydrogen from the high energy neutron detector, Mars Odyssey. Science 297:78–81CrossRefGoogle Scholar
  4. 4.
    Knapmeyer M et al (2006) Working models for spatial distribution and level of Mars’ seismicity. J Geophys Res 111:E11006. doi: 10.1029/2006JE002708 CrossRefGoogle Scholar
  5. 5.
    Mars Nasa Exploration Sito Web (2011). (consultazione novembre 2011)
  6. 6.
    McSween HY (2007) Mars (chapter 1.22). In: Holland HD, Turekian KK (eds) Treatise on geochemistry update 1. Elsevier Science, Oxford, pp 601–621Google Scholar
  7. 7.
    Righter K, Drake MJ (2000) Metal/silicate equilibrium in the early Earth – new constraints from the volatile moderately siderophile elements Ga, Cu, P and Sn. Geochim Cosmochim Acta 64(20):3581–3597CrossRefGoogle Scholar
  8. 8.
    Boynton WV et al (2007) Concentration of H, Si, Cl, K, Fe and Th in the low – and mid – latitude regions of Mars. J Geophys Res 112:E12S99. doi: 10.1029/2007JE002887 Google Scholar
  9. 9.
    Taylor SR, McLennan SM (1995) The geochemical evolution of the continental crust. Rev Geophys 33:241–265CrossRefGoogle Scholar
  10. 10.
    Favero G, Jobstraibizer P (1996) The distribution of aluminum in the Earth: from cosmogenesis to Sial evolution. Coord Chem Rev 149:367–400CrossRefGoogle Scholar
  11. 11.
    Jeffrey C et al (2008) Strike-slip faults on Mars: observation and implication for global tectonics and geodynamics. J Geophys Res 113:E08002. doi: 10.1029/2007JE002980 Google Scholar
  12. 12.
    Carpinteri A, Cardone F, Lacidogna G (2009) Energy emissions from failure phenomena: mechanical, electromagnetic, nuclear. Exp Mech 50:1235–1243CrossRefGoogle Scholar
  13. 13.
    Carpinteri A, Cardone F, Lacidogna G (2009) Piezonuclear neutrons from brittle fracture: early results of mechanical compression tests. Strain 45:332–339CrossRefGoogle Scholar
  14. 14.
    Cardone F, Carpinteri A, Lacidogna G (2009) Piezonuclear neutrons from fracturing of inert solids. Phys Lett A 373:4158–4163CrossRefGoogle Scholar
  15. 15.
    Carpinteri A, Borla O, Lacidogna G, Manuello A (2010) Neutron emissions in brittle rocks during compression tests: monotic vs. cyclic loading. Phys Mesomech 13:264–274CrossRefGoogle Scholar
  16. 16.
    Carpinteri A, Chiodoni A, Manuello A, Sandrone R (2011) Compositional and microchemical evidence of piezonuclear fission reactions in rock specimens subjected to compression tests. Strain 47(2):267–281CrossRefGoogle Scholar
  17. 17.
    Carpinteri A, Manuello A (2011) Geomechanical and geochemical evidence of piezonuclear fission reactions in the Earth’s crust. Strain 47(2):282–292CrossRefGoogle Scholar
  18. 18.
    Carpinteri A, Lacidogna G, Manuello A, Borla O (2011) Energy emissions from brittle fracture: neutron measurements and geological evidences of piezonuclear reactions. Strenght Fract Complex 7:13–31Google Scholar
  19. 19.
    Carpinteri A, Lacidogna G, Borla O, Manuello A, Niccolini G (2012) Electromagnetic and neutron emissions from brittle rocks failure: experimental evidence and geological implications. Sadhana 37(1):59–78CrossRefGoogle Scholar
  20. 20.
    Carpinteri A, Lacidogna G, Manuello A, Borla O (2012) Piezonuclear fission reactions in rocks: evidences from microchemical analysis, neutron emission, and geological transformation. Rock Mech Rock Eng 45(4):445–459CrossRefGoogle Scholar
  21. 21.
    Carpinteri A, Lacidogna G, Manuello A, Borla O (2012) Piezonuclear fission reactions from earthquakes and brittle rocks failure: evidence of neutron emission and nonradioactive product elements. Exp Mech. doi: 10.1007/s11340-012-9629-x zbMATHGoogle Scholar
  22. 22.
    Carpinteri A, Manuello A (2012) An indirect evidence of piezonuclear fission reactions: geomechanical and geochemical evolution in the Earth’s crust. Phys Mesomech 15:14–23CrossRefGoogle Scholar
  23. 23.
    Cardone F, Calbucci V, Albertini G (2014) Deformed space-time of the piezonuclear emissions. Mod Phys Lett B 28:1450012CrossRefGoogle Scholar
  24. 24.
    Cardone F, Cherubini G, Petrucci A (2009) Piezonuclear neutrons. Phys Lett A 373(8–9):862–866CrossRefGoogle Scholar
  25. 25.
    Widom A, Swain J, Srivastava YN (2015) Photo-disintegratin of the iron nucleus in fractured magnetite rocks with magetostriction. Meccanica 50:1205–1216MathSciNetCrossRefGoogle Scholar
  26. 26.
    Widom A, Swain J, Srivastava YN (2013) Neutron production from the fracture of piezoelectric rocks. J Phys G 40:015006. doi: 10.1088/0954-3899/40/1/015006 CrossRefGoogle Scholar
  27. 27.
    Hagelstein PL, Chaubrrdhary IU (2015) Anomalies in fracture experiments, and energy exchange between vibrations and nuclei. Meccanica 50:1189–1203CrossRefGoogle Scholar
  28. 28.
    Hartmann WK, Neukum G (2001) Cratering chronology and the evolution of Mars. Space Sci Rev 96:165–194CrossRefGoogle Scholar
  29. 29.
    Morgan WJ (1971) Convection plumes in the lower mantle. Nature 230:42–43CrossRefGoogle Scholar
  30. 30.
    Van Thienen P, Rivoldini A, Van Hoolst T, Lognonné PH (2006) A top-down origin for mantle plumes. Icarus 185:197–210CrossRefGoogle Scholar
  31. 31.
    Wanke H (1991) Chemistry, accretion, and evolution of Mars. Space Sci Rev 56:1–8CrossRefGoogle Scholar
  32. 32.
    Carr M (2006) The surface of Mars. Cambridge University Press, New YorkGoogle Scholar
  33. 33.
    Faure G, Mensing TM (2007) Introduction to planetary science: the geological perspective. Springer, DordrechtGoogle Scholar
  34. 34.
    Rees M (2005) Universe – the definitive visual guide. Dorling Kindersley Ltd, New York. Bouvier A, Wadhwa M (2010) The age of the solar system redefined by the oldest Pb–Pb age of a meteoritic inclusion. Nat Geosci 3:637–641Google Scholar
  35. 35.
    Nittler LR et al (2011) The major-element composition of Mercury’s surface from MESSENGER X-ray spectrometry. Science 333:1847–1850CrossRefGoogle Scholar
  36. 36.
    Watter TR et al (2009) The tectonics of Mercury: the view after MESSENGER’s first flyby. Earth Planet Sci Lett 285:283–296CrossRefGoogle Scholar
  37. 37.
    Paral J et al (2010) Sodium ion exosphere of Mercury during MESSENGER flybys. Geophys Res Lett 37:L19102CrossRefGoogle Scholar
  38. 38.
    Lord Kelvin (William Thomson) (1871) Hydrokinetic solutions and observations. Philos Mag 42:362–377Google Scholar
  39. 39.
    von Helmholtz H (1868) Über discontinuierliche Flüssigkeits-Bewegungen [On the discontinuous movements of fluids]. Monatsberichte der Königlichen Preussische Akademie der Wissenschaften zu Berlin [Monthly reports of the Royal Prussian Academy of Philosophy in Berlin] 23:215–228Google Scholar
  40. 40.
    Cardone F, Mignani R (2003) Possible observation of transformation of chemical elements in cavitated water. Int J Mod Phys B 17:307–317CrossRefGoogle Scholar
  41. 41.
    Franc J-P (2006) Physics and control of cavitation. In: Design and analysis of high speed pumps (pp. 2-1–2-36). Educational Notes RTO-EN-AVT-143, Paper 2. RTO, Neuilly-sur-Seine. Available from:
  42. 42.
    Aeschlimann V et al (2011) Velocity field analysis in an experimental cavitating mixing layer. Phys Fluids 23:055105. doi: 10.1063/1.3592327 CrossRefGoogle Scholar
  43. 43.
  44. 44.
    Rogers JH (1995) The giant planet Jupiter. Cambridge University Press, CambridgeGoogle Scholar
  45. 45.
    Rieke GH (1975) The thermal radiation of Saturn and its rings. Icarus 1:37–44CrossRefGoogle Scholar
  46. 46.
    Brice N et al (1973) Jupiter radiation belt. Icarus 18:206–219CrossRefGoogle Scholar
  47. 47.
    Roussos E (2011) Long and short term variability of Saturn’s ionic radiation belts. J Geophys Res 116:A02217Google Scholar
  48. 48.
    Lewis JS et al (2004) Physics and chemistry of the solar system. Elsevier Academic press, AmsterdamGoogle Scholar
  49. 49.
    Irwin GJP (2009) Giant planets of our solar system. Springer, BerlinCrossRefGoogle Scholar
  50. 50.
    Fletcher LN et al (2010) Thermal structure and composition of Jupiter’s great red spot from high-resolution thermal imaging. Icarus 208:306–328CrossRefGoogle Scholar
  51. 51.
    Nezlin MV et al (1982) Kelvin – Helmholtz instability and the Jovian great red spot. JETP Lett 36(6):234–238Google Scholar
  52. 52.
  53. 53.
    Woolfson M (2000) The origin and evolution of the solar system. Astron Geophys 41:1.12–1.19CrossRefGoogle Scholar
  54. 54.
    Cohen H (2012) From core to corona: layers of the Sun. Princeton Plasma Physics Laboratory (PPPL). (visited 14 Feb 2012)
  55. 55.
    Hansen CJ et al (2004) Stellar interiors. Springer, New YorkCrossRefGoogle Scholar
  56. 56.
    Basu S, Antia HM (2008) Helioseismology and solar abundances. Phys Rep 457:217–283CrossRefGoogle Scholar
  57. 57.
    Blöcker T et al (1998) Lithium depletion in the Sun: a study of mixing based on hydrodynamical simulation. Space Sci Rev 85:105–112CrossRefGoogle Scholar
  58. 58.
    Israelian G et al (2009) Enhanced lithium depletion in Sun-like stars with orbiting planets. Nature 462:189–191CrossRefGoogle Scholar
  59. 59.
    Baumann P et al (2010) Lithium depletion in solar-like stars: no planet connection. Astron Astrophys. doi: 10.1051/0004-6361/201015137 Google Scholar
  60. 60.
    Boesgaard AM et al (2002) The case of missing beryllium.
  61. 61.
    Da-run X, Li-cai D (2003) Beryllium depletion in the solar atmosphere. Chin Astron Astrophys 27:1–3CrossRefGoogle Scholar
  62. 62.
    D’antona F, Mazzitelli I (1984) Lithium depletion in stars – pre-main sequence burning and extra-mixing. Astron Astrophys 138:431–442Google Scholar
  63. 63.
    Sito Internet NASA (2012) consultato il 15 Feb 2012

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Structural, Geotechnical and Building EngineeringPolitecnico di TorinoTorinoItaly

Personalised recommendations