Advertisement

Crustal Modelling and Moho Estimation with GOCE Gravity Data

  • Daniele SampietroEmail author
Chapter
Part of the Springer Earth System Sciences book series (SPRINGEREARTH)

Abstract

GOCE observations are an extremely innovative and useful product for the study of the Earth crust at regional and global scales: on the one hand, they can be considered as a constraint to verify crustal models, on the other hand combining GOCE gravity observations with seismic data and taking into account additional information it is possible to retrieve important information on the Earth crust structure. After one year only of GOCE observations, thanks to the GOCE Exploitation for Moho Modelling and Applications (GEMMA) project, it has been possible to globally estimate the depth of the boundary between the Earth’s crust and mantle, usually called Moho, with unprecedented resolution. The knowledge of the Moho is a key topic in Solid Earth sciences: the new GOCE Moho has been used, for instance, as background information to improve our ability to understand and model earthquakes or for the study of the Earth’s heat flux and heat production which in turn constitutes a basic knowledge to understand the plate tectonics and the thermal evolution of our planet.

Keywords

Gravitational Potential Moho Depth Seismic Refraction Crustal Model Seismic Observation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Amante C, Eakins BW (2009) ETOPO1 1 Arc-minute global relief model: procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24, 19 pGoogle Scholar
  2. 2.
    Assumpção M, Feng M, Tassara A, Julià J (2013) Models of crustal thickness for South America from seismic refraction, receiver functions and surface wave tomography. Tectonophysics 609:82–96CrossRefGoogle Scholar
  3. 3.
    Bassin C, Laske G, Masters G (2000) The k. AGU, EOS Trans 81Google Scholar
  4. 4.
    Braitenberg C, Ebbing J (2009) New insights into the basement structure of the West Siberian Basin from forward and inverse modelling of GRACE satellite gravity data. J Geophys Res-Sol Ea 114(B6):B06402. doi: 10.1029/2008JB005799 CrossRefGoogle Scholar
  5. 5.
    Braitenberg C, Wang Y, Fang J, Hsu HY (2003) Spatial variations of flexure parameters over the Tibet-Qinghai Plateau. Earth Planet Sci Lett 205:211–224CrossRefGoogle Scholar
  6. 6.
    Carbonell R, Levander A, Kind R (2013) The Mohorovičić discontinuity beneath the continental crust: an overview of seismic constraints. Science 609:353–376Google Scholar
  7. 7.
    Christensen NI, Mooney WD (1995) Seismic velocity structure and composition of the continental crust: a global view. J Geophys Res-Sol Ea 100(B6):9761–9788CrossRefGoogle Scholar
  8. 8.
    Drinkwater MR, Floberghagen R, Haagmans R, Muzi D, Popescu A (2003) GOCE: ESA’s first earth explorer core mission. Earth gravity field from space? From sensors to earth sciences. Springer, Netherlands, pp 419–432CrossRefGoogle Scholar
  9. 9.
    Dugda MT, Nyblade AA, Julia J, Langston CA, Ammon CJ, Simiyu S (2005) Crustal structure in Ethiopia and Kenya from receiver function analysis: implications for rift development in eastern Africa. J Geophys Res-Sol Ea 110(B1). doi: 10.1029/2004JB003065
  10. 10.
    Dziewonski AM, Anderson DL (1981) Preliminary reference earth model. Phys Earth Planet In 25(4):297–356CrossRefGoogle Scholar
  11. 11.
    Exxon (1995). Tectonic map of the world, 18 sheets, scale 1:10,000,000. Technical Report. Exxon, Houston, TexasGoogle Scholar
  12. 12.
    Hadamard J (1923) Lectures on Cauchy problem in linear partial differential equations. Oxford University Press, LondonGoogle Scholar
  13. 13.
    Heiskanen WA, Moritz H (1967) Physical geodesy. W. H. Freeman, LondonGoogle Scholar
  14. 14.
    Jekeli C (1999) The determination of gravitational potential differences from satellite to satellite tracking. Celest Mech Dyn Astr 75:85–101Google Scholar
  15. 15.
    Koch KR (1999) Parameter estimation and hypothesis testing in linear models, 2nd edn. Springer, BerlinGoogle Scholar
  16. 16.
    Laske G, Masters G, Ma Z, Pasyanos M (2013) Update on CRUST1.0—a 1-degree global model of earth’s crust. Geophys Res Abstr 15Google Scholar
  17. 17.
    Last RJ, Nyblade AA, Langston CA, Owens TJ (1997) Crustal structure of the East African Plateau from receiver functions and Rayleigh wave phase velocities. J Geophys Res-Sol Ea 102(B11):24469–24483CrossRefGoogle Scholar
  18. 18.
    Lebedev S, Adam JMC, Meier T (2013) Mapping the Moho with seismic surface waves: a review, resolution analysis, and recommended inversion strategies. Tectonophysics 609:377–394CrossRefGoogle Scholar
  19. 19.
    Meier U, Curtis A, Trampert J (2007) Global crustal thickness from neural network inversion of surface wave data. Geophys J Int 169(2):706–722CrossRefGoogle Scholar
  20. 20.
    Meissner R (1973) The ‘Moho’ as a transition zone. Geophys surv 1(2):195–216CrossRefGoogle Scholar
  21. 21.
    Migliaccio F, Reguzzoni M, Sansò F, Tselfes N (2008) An error model for the GOCE space-wise solution by Monte Carlo methods. In: Sideris MG (ed) International Association of Geodesy Symposia? Observing our changing earth? vol 133, pp 337–344Google Scholar
  22. 22.
    Mohorovičić A (1992) Earthquake of 8 October 1909. Geofizika 9(1):3–55Google Scholar
  23. 23.
    Mooney WD, Laske G, Masters TG (1998) CRUST 5.1: a global crustal model at 5 × 5. J Geophys Res-Sol Ea 103(B1):727–747Google Scholar
  24. 24.
    Moritz H (1990) The figure of the earth: theoretical geodesy and the earth’s Interior. WichmannGoogle Scholar
  25. 25.
    Oldenburg DW (1974) The inversion and interpretation of gravity anomalies. Geophysics 39:526–536CrossRefGoogle Scholar
  26. 26.
    Pail R, Goiginger H, Mayrhofer R, Schuh WD, Brockmann JM, Krasbutter I, Höck E, Fecher T (2010) GOCE gravity field model derived from orbit and gradiometry data applying the time-wise method. In: Proceedings of the ESA living planet symposium, ESA Publication SP-686, ESA/ESTEC, pp 978–992Google Scholar
  27. 27.
    Reguzzoni M, Samietro D (2014) GEMMA: an earth crustal model based on GOCE satellite data. Int J Appl Earth Obs Geoinf. doi: 10.1016/j.jag.2014.04.002 Google Scholar
  28. 28.
    Reguzzoni M, Sampietro D (2012) Moho estimation using GOCE data: a numerical simulation. In: Kenyon SC, Pacino MC, Marti U (eds) International Association of geodesy symposia, “geodesy for planet earth” vol 136, pp 205–214Google Scholar
  29. 29.
    Reguzzoni M, Tselfes N (2009) Optimal multi-step collocation: application to the space-wise approach for GOCE data analysis. J Geodesy 83(1):13–29CrossRefGoogle Scholar
  30. 30.
    Reguzzoni M, Sampietro D, Sansò F (2013) Global Moho from the combination of the CRUST2.0 model and GOCE data. Geophys J Int 195(1):222–237Google Scholar
  31. 31.
    Sampietro D (2011) GOCE exploitation for Moho modeling and applications. In: Proceedings of the 4th international GOCE user workshop, vol 31, Munich, GermanyGoogle Scholar
  32. 32.
    Sampietro D, Sansò F (2012) Uniqueness theorems for inverse gravimetric problems. In: Sneeuw N, Nóvak P, Crespi M, Sansò F (eds) International Association of Geodesy Symposia, VII Hotine-Marussi symposium on mathematical geodesy? vol 137, pp 111–115Google Scholar
  33. 33.
    Sampietro D, Reguzzoni M, Negretti M (2014) The GEMMA crustal model: first validation and data distribution. In: Proceedings of ESA living planet symposium 2013, ESA SP-722Google Scholar
  34. 34.
    Sampietro D, Reguzzoni M, Braitenberg C (2014) The GOCE estimated Moho beneath the Tibetan Plateau and Himalaya. In: Rizos C, Willis P (eds) International Association of Geodesy Symposia, “Earth on the edge: science for a sustainable planet” vol 139, pp 391–397Google Scholar
  35. 35.
    Sansò F (1980) Internal collocation. Memorie dell’Accademia dei Lincei XVI(1)Google Scholar
  36. 36.
    Sansò F, Barzaghi R, Tscherning CC (1986) Choice of norm for the density distribution of the earth. Geophys J Roy Astr S 87(1):123–141CrossRefGoogle Scholar
  37. 37.
    Schock E (1984) On the asymptotic order of accuracy of Tikhonov regularization. J Optim Theory App 44(1):95–104CrossRefGoogle Scholar
  38. 38.
    Shin YH, Shum CK, Braitenberg C, Lee SM, Xu H, Choi KS, Baek JH, Park JU (2009) Three dimensional fold structure of the Tibetan Moho from GRACE gravity data. Geophys Res Lett 36(1):L01302. doi: 10.1029/2008JB005799 CrossRefGoogle Scholar
  39. 39.
    Sideris MG (1996) On the use of heterogeneous noisy data in spectral gravity field modeling methods. J Geodesy 70(8):470–479CrossRefGoogle Scholar
  40. 40.
    Sjöberg LE (2009) Solving Vening Meisnesz-Moritz inverse problem in isostasy. Geophys J Int 179(3):1527–1536Google Scholar
  41. 41.
    Sjöberg LE, Bagherbandi M (2011) A method of estimating the Moho density contrast with a tentative application of EGM08 and CRUST2.0. Acta Geophys 59(3):502–525Google Scholar
  42. 42.
    Soller DR, Ray RD, Brown RD (1982) A new global crustal thickness map. Tectonics 1(2):125–149CrossRefGoogle Scholar
  43. 43.
    Strang van Hees GL (2000) Some elementary relations between mass distributions inside the Earth and the geoid and gravity field. J Geodyn 29:111–123Google Scholar
  44. 44.
    Sünkel H (1985) An isostatic Earth model. Report No. 367, Department of Geodetic Science and Surveying. The Ohio State University, ColumbusGoogle Scholar
  45. 45.
    Tokam APK, Tabod CT, Nyblade AA, Julià J, Wiens DA, Pasyanos ME (2010) Structure of the crust beneath Cameroon, West Africa, from the joint inversion of Rayleigh wave group velocities and receiver functions. Geophys J Int 183(2):1061–1076CrossRefGoogle Scholar
  46. 46.
    Tseng TL, Chen WP, Nowack RL (2009) Northward thinning of Tibetan crust revealed by virtual seismic profiles. Geophys Res Lett 36:L24304. doi: 10.1029/2009GL040457 CrossRefGoogle Scholar
  47. 47.
    Visser PNAM, Sneeuw N, Gerlach C (2003) Energy integral method for gravity field determination from satellite orbit coordinates. J Geodesy 77(3–4):207–216CrossRefGoogle Scholar
  48. 48.
    Zhang Z, Klemperer SL (2005) West-east variation in crustal thickness in northern Lhasa block, central Tibet, from deep seismic sounding data. J Geophys Res 110:B09403. doi: 10.1029/2004JB003139 Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.GReD s.r.l., c/o Politecnico di Milano - Polo Territoriale di ComoComoItaly

Personalised recommendations