TIBAGS: Tropospheric Iodine Monoxide and Its Coupling to Biospheric and Atmospheric Variables—a Global Satellite Study

  • Anja SchönhardtEmail author
  • Andreas Richter
  • John P. Burrows
Part of the Springer Earth System Sciences book series (SPRINGEREARTH)


In the framework of the TIBAGS project, spatial and temporal variations of iodine monoxide, IO, in the Earth’s atmosphere were analysed, and relations between IO and further variables of the biosphere and atmosphere were investigated. The abundances and variations of IO are not well known on a global scale, partly because IO amounts are comparably low. However, due to strong reactivity, also small amounts of IO may have a substantial impact on tropospheric composition. In the present study, satellite data from the SCIAMACHY (Scanning Imaging Absorption spectrometer for Atmospheric CHartographY) sensor on board the ENVISAT satellite is used and a more global view on the subject is obtained. IO amounts are retrieved from measurements of scattered sunlight by using an absorption spectroscopy technique. Two consistent IO data sets are retrieved, one based on near real-time data (2004–2011) and one based on reprocessed consolidated data (2003–2010). Largest amounts of IO are found in the Polar Regions of Antarctica, for example in the Weddell Sea area in spring time. In addition, enhanced IO amounts are detected above some but not all biologically active ocean areas which show high Chlorophyll-a (Chl-a) signals. Correlations between IO and diatom distributions are in some areas stronger than between IO and Chl-a in general, indicating the importance of the specific phytoplankton species present in the ocean water.


Differential Optical Absorption Spectroscopy Iodine Compound Slant Column Iodine Release Atmospheric Iodine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The TIBAGS project has been financially supported by ESA within the CESN framework. Further financial support was received from the State and University of Bremen, the German Aerospace Center DLR, and the European Union. SCIAMACHY data are provided by ESA and DLR. Support by Vladimir Rozanov on the application of SCIATRAN is gratefully acknowledged. Sea ice concentration data from AMSR-E observations are available at ICDC, Integrated Climate Data Center, ZMAW, in Hamburg, asi amsre.html?&L = 1. Chl-a data are provided through the ESA GlobColour Project: ACRI & the GlobColour Team, funded by ESA with data from ESA, NASA and GeoEye, MERIS/MODIS/SeaWiFS merged product, information and data are available at Diatom data are courtesy of Astrid Bracher, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, and Tilman Dinter, University of Bremen, in the framework of HGF project Phytooptics (VH-NG-300) and EU project SHIVA (226224-FP7-ENV.2008.


  1. 1.
    Atkinson HM, Huang R-J, Chance R, Roscoe HK, Hughes C, Davison B, Schönhardt A, Mahajan AS, Saiz-Lopez A, Hoffmann T, Liss PS (2012) Iodine emissions from the sea ice of the Weddell Sea. Atmos Chem Phys 12:11229–11244. doi: 10.5194/acp-12-11229-2012 CrossRefGoogle Scholar
  2. 2.
    Begoin M, Richter A, Weber M, Kaleschke L, Tian-Kunze X, Stohl A, Theys N, Burrows JP (2010) Satellite observations of long range transport of a large BrO plume in the Arctic. Atmos Chem Phys 10:6515–6526. doi: 10.5194/acp-10-6515-2010
  3. 3.
    Bovensmann H, Burrows JP, Buchwitz M, Frerick J, Noël S, Rozanov VV, Chance KV, Goede APH (1999) SCIAMACHY: mission objectives and measurement modes. J Atmos Sci 56:127–150CrossRefGoogle Scholar
  4. 4.
    Bracher A, Vountas M, Dinter T, Burrows JP, Röttgers R, Peeken I (2009) Quantitative observation of cyanobacteria and diatoms from space using PhytoDOAS on SCIAMACHY data. Biogeosciences 6:751–764. doi: 10.5194/bg-6-751-2009 CrossRefGoogle Scholar
  5. 5.
    Burrows JP, Hölzle E, Goede APH, Visser H, Fricke W (1995) SCIAMACHY—scanning imaging absorption spectrometer for atmospheric chartography. Acta Astronaut 35:445–451CrossRefGoogle Scholar
  6. 6.
    Carpenter LJ (2003) Iodine in the marine boundary layer. Chem Rev 103:4953–4962CrossRefGoogle Scholar
  7. 7.
    Carpenter LJ, MacDonald SM, Shaw MD, Kumar R, Saunders RW, Parthipan R, Wilson J, Plane JMC (2013) Atmospheric iodine levels influenced by sea surface emissions of inorganic iodine. Nat Geosci 6:108–111. doi: 10.1038/ngeo1687
  8. 8.
    Dix B, Baidar S, Bresch JF, Hall SR, Schmidt KS, Wang S, Volkamer R (2013) Detection of iodine monoxide in the tropical free troposphere. PNAS 110(6):2035–2040CrossRefGoogle Scholar
  9. 9.
    Giese B, Laturnus F, Adams FC, Wiencke C (1999) Release of volatile iodinated C1–C4 hydrocarbons by marine macroalgae from various climate zones. Environ Sci Technol 33:2432–2439CrossRefGoogle Scholar
  10. 10.
    Gómez Martín JC, Spietz P, Burrows JP (2007) Kinetic and mechanistic studies of the I2/O3 photochemistry. J Phys Chem A 111:306. doi: 10.1021/jp061186c
  11. 11.
    Gottwald M, Bovensmann, H, Lichtenberg G, Noël S, von Bargen A, Slijkhuis S, Piters A, Hoogeveen R, von Savigny C, Buchwitz M, Kokhanovsky A, Richter A, Rozanov A, Holzer-Popp T, Bramstedt K, Lambert J-C, Skupin J, Wittrock F, Schrijver H, Burrows JP (eds) (2006) SCIAMACHY—monitoring the changing Earth’s atmosphere, DLR, Institut für Methodik der Fernerkundung (IMF). Available online at Last access on 20 July 2012
  12. 12.
    Gottwald M, Bovensmann H (eds) (2011) SCIAMACHY—exploring the changing Earth’s atmosphere. Springer, Heidelberg. doi: 10.1007/978-90-481-9896-2. ISBN 978-90-481-9895-5
  13. 13.
    Kaleschke L, Lüpkes C, Vihma T, Haarpaintner J, Bochert A, Hartmann J, Heygster G (2001) SSM/I sea ice remote sensing for mesoscale ocean-atmosphere interaction analysis. Can J Remote Sens 27:526–537CrossRefGoogle Scholar
  14. 14.
    Mahajan AS, Gómez Martín JC, Hay TD, Royer SJ, Yvon-Lewis S, Liu Y, Hu L, Prados-Roman C, Ordóñez C, Plane JMC, Saiz-Lopez A (2012) Latitudinal distribution of reactive iodine in the Eastern Pacific and its link to open ocean sources. Atmos Chem Phys 12:11609–11617. doi: 10.5194/acp-12-11609-2012
  15. 15.
    Pedersén M, Collén J, Abrahamsson K, Ekdahl A (1996) Production of halocarbons by seaweeds: an oxidative stress reaction? Sci Marina 60:257–263Google Scholar
  16. 16.
    Platt U, Perner D (1980) Direct measurements of atmospheric CH2O, HNO2, O3, NO2, SO2 by differential optical absorption in the near UV. J Geophys Res 85(C12):7453–7458CrossRefGoogle Scholar
  17. 17.
    Platt U, Stutz J (2008) Differential optical absorption spectroscopy—principles and applications, Springer, Berlin. ISBN 978-3-540-21193-8Google Scholar
  18. 18.
    Puentedura O, Gil M, Saiz-Lopez A, Hay T, Navarro-Comas M, Gómez-Pelaez A, Cuevas E, Iglesias J, Gomez L (2012) Iodine monoxide in the north subtropical free troposphere. Atmos Chem Phys 12:4909–4921. doi: 10.5194/acp-12-4909-2012 CrossRefGoogle Scholar
  19. 19.
    Richter A, Wittrock F, Eisinger M, Burrows JP (1998) GOME observations of tropospheric BrO in Northern Hemispheric spring and summer 1997. Geophys Res Lett 25:2683–2686CrossRefGoogle Scholar
  20. 20.
    Rozanov VV, Rozanov AV, Kokhanovsky AA, Burrows JP (2014) Radiative transfer through terrestrial atmosphere and ocean: software package SCIATRAN. J Quant Spectrosc Radiat Transfer 133:13–71CrossRefGoogle Scholar
  21. 21.
    Saiz-Lopez A, Mahajan AS, Salmon RA, Bauguitte SJ-B, Jones AE, Roscoe HK, Plane JMC (2007) Boundary layer halogens in coastal Antarctica. Science 317:348–351. doi: 10.1126/science.1141408
  22. 22.
    Saiz-Lopez A, Plane JMC, Baker AR, Carpenter LJ, von Glasow R, Gómez Martín JC, McFiggans G, Saunders RW (2012) Atmospheric chemistry of iodine. Chem Rev 112:1773–1804. doi: 10.1021/cr200029u
  23. 23.
    Schönhardt A, Begoin M, Richter A, Wittrock F, Kaleschke L (2012) Gómez Martín, J. C., and Burrows, J. P.: Simultaneous satellite observations of IO and BrO over Antarctica. Atmos Chem Phys 12:6565–6580. doi: 10.5194/acp-12-6565-2012 CrossRefGoogle Scholar
  24. 24.
    Schönhardt A, Richter A, Wittrock F, Kirk H, Oetjen H, Roscoe HK, Burrows JP (2008) Observations of iodine monoxide columns from satellite. Atmos Chem Phys 8:637–653. doi: 10.5194/acp-8-637-2008
  25. 25.
    Simpson WR, von Glasow R, Riedel K, Anderson P, Ariya P, Bottenheim J, Burrows J, Carpenter LJ, Frieß U, Goodsite ME, Heard D, Hutterli M, Jacobi H-W, Kaleschke L, Neff B, Plane J, Platt U, Richter A, Roscoe H, Sander R, Shepson P, Sodeau J, Steffen A, Wagner T, Wolff E (2007) Halogens and their role in polar boundary-layer ozone depletion. Atmos Chem Phys 7:4375–4418. doi: 10.5194/acp-7-4375-2007
  26. 26.
    Spreen G, Kaleschke L, Heygster G (2008) Sea ice remotesensing using AMSR-E 89 GHz channels. J Geophys Res 113:C02S03. doi: 10.1029/2005JC00338
  27. 27.
    Theys N, Van Roozendael M, Hendrick F, Yang X, De Smedt I, Richter A, Begoin M, Errera Q, Johnston PV, Kreher K, De Mazière M (2011) Global observations of tropospheric BrO columns using GOME-2 satellite data. Atmos Chem Phys 11:1791–1811. doi: 10.5194/acp-11-1791-2011 CrossRefGoogle Scholar
  28. 28.
    Tokarczyk R, Moore RM (1994) Production of volatile organohalogens by phytoplankton cultures. Geophys Res Lett 21(4):285–288CrossRefGoogle Scholar
  29. 29.
    Volkamer R, Coburn S, Dix B, Sinreich R (2010) The eastern Pacific Ocean is a source for short lived trace gases: glyoxal and iodine oxide. Clivar Exchanges 53(2):30–33Google Scholar
  30. 30.
    Wagner T, Platt U (1998) Satellite mapping of enhanced BrO concentration in the troposphere. Nature 395:486–490CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Anja Schönhardt
    • 1
    Email author
  • Andreas Richter
    • 1
  • John P. Burrows
    • 1
  1. 1.Institute of Environmental Physics, University of BremenBremenGermany

Personalised recommendations