Skip to main content

Array CGH and Partial Genome Sequencing for Rapidly Karyotyping IVF Blastocysts Before Single Transfer

  • Chapter
Screening the Single Euploid Embryo

Abstract

The relatively high levels of aneuploidy identified in IVF embryos recently have raised the opportunity to improve pregnancy rates and liveborn outcomes with IVF by identifying and transferring only one chromosomally balanced embryo. With the increased use of CGH, it has been observed that any of the chromosomes can be involved in aneuploidy and even de novo segmental aneuploidies may contribute to implantation failure and miscarriage in a typical IVF cycle. The previous limitations in FISH complexity had meant that the full benefits of aneuploidy screening were not initially realised. The impact of reliable whole chromosome amplification methods and the availability of quality controlled commercial microarrays has seen strong uptake of total chromosome screening by many clinics around the world with substantial changes in implantation rates for the selected embryos reported in most cases. In spite of these benefits, the cost of the aCGH process appears to have limited the availability for a significant number of patients. The price of arrays has reduced in the last few years, but this remains a substantial cost burden in many situations. An alternative approach that can still meet the criteria of total chromosome screening but is potentially more cost-effective could bring the benefits of total chromosome screening to an even wider patient group. Partial genome sequencing (PGS) or low-pass sequencing is one alternative that can be used to rapidly karyotype whole-genome-amplified samples from human blastocysts. We compared these with array-based comparative genomic hybridization (aCGH) karyotypes. Readily available open-source software was customised and then used to map the individual Next Generation Sequencing (NGS) reads to chromosomes providing considerable flexibility for resolving both total chromosomes as well as segmental variations. Qualitatively, there was complete diagnostic agreement between the two approaches. Quantitatively, the sequencing approach also offered simple implementation of objective measures of levels of mosaicism within the multi-cell trophectoderm biopsy piece aiding final decision-making regarding suitability for transfer of the nominated (single) embryo. Depending on individual laboratory capabilities, either technique can have shortened protocols that enable next day transfer of one euploid embryo. Standard protocols for aCGH or PGS can fit timing wise with cleavage stage biopsy. Embryos biopsied on day 5 of cycle will only be transferrable the next day, while slower developing embryos biopsied on day 6 may need to be frozen and transferred at a later time. While reports of day 3 blastomere biopsy show improved pregnancy rates after screening, the final outcomes do not appear to be as good as blastocyst stage biopsy, thus not realising the full potential of screening. Applied correctly, simplified, cost-effective routine aneuploidy analysis via aCGH or NGS promises high live birth rates per single transferred embryo.

Author Contributions: 

All authors contributed to the preparation of the manuscript. PB and DL performed the laboratory components and WR developed the SeqVar algorithms from publicly available software.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Catt J, Wood T, Henman M, Jansen R. Single embryo transfer in IVF to prevent multiple pregnancies. Twin Res. 2003;6:536–9.

    Article  PubMed  Google Scholar 

  2. Land JA, Evers JLH. Risks and complications in assisted reproduction techniques: report of an ESHRE consensus meeting. Hum Reprod. 2003;18:455–7.

    Article  CAS  PubMed  Google Scholar 

  3. Henman M, Catt JW, Wood T, Bowman MC, de Boer KA, Jansen RPS. Elective transfer of single fresh blastocysts and later transfer of cryostored blastocysts reduces the twin pregnancy rate and can increase the IVF live birth rate in younger women. Fertil Steril. 2005;84:1620–7.

    Article  PubMed  Google Scholar 

  4. de Boer KA, Catt JW, Jansen RPS, Leigh D, McArthur S. Moving to blastocyst biopsy for preimplantation genetic diagnosis and single embryo transfer at Sydney IVF. Fertil Steril. 2004;82:295–8.

    Article  PubMed  Google Scholar 

  5. Van Steirteghem A. A European perspective on single embryo transfer. In: Gerris J, Adamson GD, De Sutter P, Racowsky C, editors. Single embryo transfer. New York, NY: Cambridge University Press; 2009. p. 283–8.

    Google Scholar 

  6. Jansen RPS, McArthur SJ. Ovarian stimulation, blastocyst culture and preimplantation genetic screening for elective single embryo transfer. In: Gerris J, Adamson GD, De Sutter P, Racowsky C, editors. Single embryo transfer. New York, NY: Cambridge University Press; 2009. p. 93–108.

    Google Scholar 

  7. Montag M, Liebenthron J, Köster M. Which morphological scoring system is relevant in human embryo development? Placenta. 2011;32:s252–6.

    Article  PubMed  Google Scholar 

  8. Machtinger R, Racowsky C. Morphological systems of human embryo assessment and clinical evidence. Reprod Biomed Online. 2013;26:210–21.

    Article  PubMed  Google Scholar 

  9. Boué A, Boué J, Gropp A. Cytogenetics of pregnancy wastage. Adv Hum Genet. 1985;14:1–57.

    PubMed  Google Scholar 

  10. Eiben B, Bartels I, Bähr-Porsch S, Borgmann S, Gatz G, Gellert G, et al. Cytogenetic analysis of 750 spontaneous abortions with the direct-preparation method of chorionic villi and its implications for studying genetic causes of pregnancy wastage. Am J Hum Genet. 1990;47:656–63.

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Menasha J, Levy B, Hirschhorn K, Kardon NB. Incidence and spectrum of chromosome abnormalities in spontaneous abortions: new insights from a 12-year study. Med Genet. 2005;7:251–63.

    Article  Google Scholar 

  12. Delhanty JDA. Mechanisms of aneuploidy induction in human oogenesis and early embryogenesis. Cytogenet Genome Res. 2005;111:237–44.

    Article  CAS  PubMed  Google Scholar 

  13. Mantzouratou A, Delhanty JDA. Aneuploidy in the human cleavage stage embryo. Cytogenet Genome Res. 2011;133:141–8.

    Article  CAS  PubMed  Google Scholar 

  14. Jansen RPS, Bowman MC, de Boer KA, Leigh DA, Lieberman DB, McArthur SJ. What next for preimplantation screening (PGS)? Experience with blastocyst biopsy and testing for aneuploidy. Hum Reprod. 2008;23:1476–8.

    Article  PubMed  Google Scholar 

  15. Coonen E, Derhaag JG, Dumoulin JCM, van Wissen LCP, Bras M, Janssen M, Evers JLH, Geraedts JPM. Anaphase lagging mainly explains chromosomal mosaicism in human preimplantation embryos. Hum Reprod. 2004;19:316–24.

    Article  PubMed  Google Scholar 

  16. Daphnis DD, Delhanty JDA, Jerkovic S, Geyer J, Craft I, Harper JC. Detailed FISH analysis of day 5 human embryos reveals the mechanisms leading to mosaic aneuploidy. Hum Reprod. 2005;20:129–37.

    Article  CAS  PubMed  Google Scholar 

  17. Harrison RH, Kuo H-C, Scriven PN, Handyside AH, Mackie Ogilvie M. Lack of cell cycle checkpoints in human cleavage stage embryos revealed by a clonal pattern of chromosomal mosaicism analysed by sequential multicolour FISH. Zygote. 2000;8:217–24.

    Article  CAS  PubMed  Google Scholar 

  18. Avo Santos M, Teklenburg G, Macklon NS, Van Opstal D, Schuring-Blom GH, Krijtenburg PJ, de Vreeden-Elbertse J, Fauser BC, Baart EB. The fate of the mosaic embryo: chromosomal constitution and development of Day 4, 5 and 8 human embryos. Hum Reprod. 2010;25:1916–26.

    Article  Google Scholar 

  19. Baart EB, van den Berg I, Martini E, Eussen HJ, Fauser BCJM, Van Opstal D. FISH analysis of 15 chromosomes in human day 4 and 5 preimplantation embryos: the added value of extended aneuploidy detection. Prenat Diagn. 2007;27:55–63.

    Article  CAS  PubMed  Google Scholar 

  20. Wells D, Sherlock JK, Handyside AH, Delhanty JD. Detailed chromosomal and molecular genetic analysis of single cells by whole genome amplification and comparative genomic hybridisation. Nucleic Acids Res. 1999;27:1214–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Wells D, Delhanty JDA. Comprehensive chromosomal analysis of human preimplantation embryos using whole genome amplification and single cell comparative genomic hybridization. Mol Hum Reprod. 2000;6:1055–62.

    Article  CAS  PubMed  Google Scholar 

  22. Wilton L, Williamson R, McBain J, Edgar D, Voullaire L. Birth of a healthy infant after preimplantation confirmation of euploidy by comparative genomic hybridization. N Engl J Med. 2001;345:1537–41.

    Article  CAS  PubMed  Google Scholar 

  23. Wells D, Alfarawati S, Fragouli E. Use of comprehensive chromosomal screening for embryo assessment: microarray and CGH. Mol Hum Reprod. 2008;14:703–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Fragouli E, Lenzi M, Ross R, Katz-Jaffe M, Schoolcraft WB, Wells D. Comprehensive molecular cytogenetic analysis of the human blastocyst stage. Hum Reprod. 2008;23:2596–608.

    Article  CAS  PubMed  Google Scholar 

  25. Schoolcraft WB, Fragouli E, Stevens J, Munné S, Katz-Jaffe MG, Wells D. Clinical application of comprehensive chromosomal screening at the blastocyst stage. Fertil Steril. 2010;94:1700–6.

    Article  PubMed  Google Scholar 

  26. Kuwayama M. Highly efficient vitrification for cryopreservation of human oocytes and embryos: the Cryotop method. Theriogenology. 2007;67:73–80.

    Article  CAS  PubMed  Google Scholar 

  27. McArthur SJ, Leigh D, Marshall JT, de Boer KA, Jansen RPS. Pregnancies and live births after trophectoderm biopsy and preimplantation genetic testing of human blastocysts. Fertil Steril. 2005;84:1628–36.

    Article  PubMed  Google Scholar 

  28. McArthur SJ, Leigh D, Marshall JT, Gee AJ, De Boer KA, Jansen RPS. Blastocyst trophectoderm biopsy and preimplantation genetic diagnosis for familial monogenic disorders and chromosomal translocations. Prenat Diagn. 2008;28:434–42.

    Article  CAS  PubMed  Google Scholar 

  29. Jansen RPS. Benefits and challenges brought by improved results from in vitro fertilization. Intern Med J. 2005;35:108–17.

    Article  CAS  PubMed  Google Scholar 

  30. Fragouli E, Alfarawati S, Daphnis DD, Goodall NN, Mania A, Griffiths T, Gordon A, Wells D. Cytogenetic analysis of human blastocysts with the use of FISH, CGH and aCGH: scientific data and technical evaluation. Hum Reprod. 2011;26:480–90.

    Article  CAS  PubMed  Google Scholar 

  31. Johnson DS, Cinnioglu C, Ross R, Filby A, Gemelos G, Hill M, Ryan A, Smotrich D, Rabinowitz M, Murray MJ. Comprehensive analysis of karyotypic mosaicism between trophectoderm and inner cell mass. Mol Hum Reprod. 2009;16:944–9.

    Article  Google Scholar 

  32. Bisgnano A, Wells D, Harton G, Munné S. PGD and aneuploidy screening for 24 chromosomes: advantages and disadvantages of competing platforms. Reprod Biomed Online. 2011;23:677–85.

    Article  Google Scholar 

  33. Yin XY, Tan K, Vajta G, Jiang H, Tan YQ, Zhang CL, et al. Massively parallel sequencing for chromosomal abnormality testing in trophectoderm cells of human blastocysts. Biol Reprod. 2013;88:1–6.

    Article  Google Scholar 

  34. Clouston HJ, Herbert M, Fenwick J, Murdoch AP, Wolstoneholm J. Cytogenetic analysis of human blastocysts. Prenat Diagn. 2002;22:1143–52.

    Article  PubMed  Google Scholar 

  35. Xie C, Tammi MT. CNV-seq, a new method to detect copy number variation using high-throughput sequencing. BMC Bioinformatics. 2009;10:80–8.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Vanneste E, Voet T, Melotte C, Debrock S, Sermon K, Staessen C, Liebaers I, Fryns JP, D’Hooghe T, Vermeesch JR. What next for preimplantation genetic screening? High mitotic chromosome instability rate provides the biological basis for the low success rate. Hum Reprod. 2009;24(11):2679–82.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Barbash-Hazan S, Frumkin T, Malcov M, Yaron Y, Cohen T, Azem F, Amit A, Ben-Yosef D. Preimplantation aneuploid embryos undergo self-correction in correlation with their developmental potential. Fertil Steril. 2009;92:890–6.

    Article  PubMed  Google Scholar 

  38. Kalousek DK, Vekemans M. Confined placental mosaicism. J Med Genet. 1996;33(7):529–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Simpson JL, Rechitsky S, Kuliev A. Next-generation sequencing for preimplantation genetic diagnosis. Fertil Steril. 2013;99:1203–4.

    Article  CAS  PubMed  Google Scholar 

  40. Jansen RPS. Elusive fertility: fecundability in perspective. Fertil Steril. 1995;64:252–4.

    CAS  PubMed  Google Scholar 

  41. Leridon H. Levels of natural fertility. In: Human fertility, the basic components. Chicago, IL: University of Chicago Press; 1977. p. 104–20.

    Google Scholar 

  42. Roy TK, Bradley CK, Bowman MC, McArthur SJ. Single-embryo transfer of vitrified-warmed blastocysts yields equivalent live-birth rates and improved neonatal outcomes compared with fresh transfers, Chapter 14 Microarrays. Fertil Steril. 2014;101:1294–301.

    Article  PubMed  Google Scholar 

  43. Barnhart KT. Introduction: are we ready to eliminate the transfer of fresh embryos in in vitro fertilization? Fertil Steril. 2014;102(1):1–2.

    Article  PubMed Central  PubMed  Google Scholar 

  44. International Standing Committee on Human Cytogenetic Nomenclature. In: Shaffer LG, McGowan-Jordon J, Schmid M, editors. ISCN 2013: An international system for human cytogenetic nomenclature. Basel: Karger; 2013. p. 121–8.

    Google Scholar 

Download references

Acknowledgements

We thank Omar Chami, Ph.D., at Genea for his contribution towards the administration associated with the 25 blastocysts contributed to the project under NHMRC Licence 309702B and for thawing the embryos for further culture and preparation leading to the analyses.

Competing Interests DL, SMcA, and RPSJ are shareholders in Genea Limited (formerly Sydney IVF, Ltd), an unlisted public company.

Conflict of Interest The authors declare no conflict.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Don Leigh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Barahona, P., Leigh, D., Ritchie, W., McArthur, S.J., Jansen, R.P.S. (2015). Array CGH and Partial Genome Sequencing for Rapidly Karyotyping IVF Blastocysts Before Single Transfer. In: Sills, E. (eds) Screening the Single Euploid Embryo. Springer, Cham. https://doi.org/10.1007/978-3-319-16892-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16892-0_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16891-3

  • Online ISBN: 978-3-319-16892-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics