Towards Coexistence of Human and Robot: How Ubiquitous Computing Can Contribute?

  • Jingyuan Cheng
  • Xiaoping Chen
  • Paul Lukowicz
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 345)


After the ISO 10218-1/2 in 2011, safety factors for industry robot are standardized. As robotics expands its area from industry further into service, educational, healthcare and etc., both human and robot are exposed to a space with more openness and less certainty. Because there is no common safety specification, we raise in this paper our own hypotheses on the safety requirements in dense human-robot co-existing scenarios and focus more on demonstrating the possibilities provided by the research field named Ubiquitous Computing.


Wireless Sensor Network Mobile Robot Humanoid Robot Ubiquitous Computing Industrial Robot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    World robotics industrial robots 2013 - summary; service robots 2013 - summary. Technical report, IFR Statistical Department, VDMA Robotics and Automation association (2013),
  2. 2.
    ISO10218-1:2011: Robots and robotic devices – safety requirements for industrial robots, part 1: Robots (2011)Google Scholar
  3. 3.
    ISO10218-2:2011: Robots and robotic devices – safety requirements for industrial robots, part 2: Robot systems and integration (2011)Google Scholar
  4. 4.
    Vasic, M., Billard, A.: Safety issues in human-robot interactions. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 197–204. IEEE (2013)Google Scholar
  5. 5.
    Jiang, B.C., Gainer Jr., C.A.: A cause-and-effect analysis of robot accidents. Journal of Occupational Accidents 9(1), 27–45 (1987)CrossRefGoogle Scholar
  6. 6.
    Weiser, M.: The computer for the 21st century. Scientific American 265(3), 94–104 (1991)CrossRefGoogle Scholar
  7. 7.
    Sanpechuda, T., Kovavisaruch, L.: A review of rfid localization: Applications and techniques. In: 5th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, ECTI-CON 2008, vol. 2, pp. 769–772. IEEE (2008)Google Scholar
  8. 8.
    Mantyjarvi, J., Paternò, F., Salvador, Z., Santoro, C.: Scan and tilt: towards natural interaction for mobile museum guides. In: Proceedings of the 8th Conference on Human-Computer Interaction with Mobile Devices and Services, pp. 191–194. ACM (2006)Google Scholar
  9. 9.
    Mamei, M., Zambonelli, F.: Pervasive pheromone-based interaction with rfid tags. ACM Transactions on Autonomous and Adaptive Systems (TAAS) 2(2), 4 (2007)CrossRefGoogle Scholar
  10. 10.
    Utsumi, Y., Kato, Y., Kunze, K., Iwamura, M., Kise, K.: Who are you?: A wearable face recognition system to support human memory. In: Proceedings of the 4th Augmented Human International Conference, pp. 150–153. ACM (2013)Google Scholar
  11. 11.
    Dey, A.K.: Understanding and using context. Personal and Ubiquitous Computing 5(1), 4–7 (2001)CrossRefGoogle Scholar
  12. 12.
    Arkin, R.C.: Homeostatic control for a mobile robot: Dynamic replanning in hazardous environments. Journal of Robotic Systems 9(2), 197–214 (1992)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Haddadin, S., Albu-Schäffer, A., Hirzinger, G.: Safety evaluation of physical human-robot interaction via crash-testing. In: Robotics: Science and Systems, vol. 3, pp. 217–224 (2007)Google Scholar
  14. 14.
    Cannata, G., Maggiali, M., Metta, G., Sandini, G.: An embedded artificial skin for humanoid robots. In: IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, MFI 2008, pp. 434–438. IEEE (2008)Google Scholar
  15. 15.
    Graf, B., Hägele, M.: Dependable interaction with an intelligent home care robot. In: Proceedings of ICRA-Workshop on Technical Challenge for Dependable Robots in Human Environments, pp. 21–26 (2001)Google Scholar
  16. 16.
    Schmitz, N., Spranger, C., Berns, K.: 3d audio perception system for humanoid robots. In: Second International Conferences on Advances in Computer-Human Interactions, ACHI 2009, pp. 181–186. IEEE (2009)Google Scholar
  17. 17.
    DeSouza, G.N., Kak, A.C.: Vision for mobile robot navigation: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(2), 237–267 (2002)CrossRefGoogle Scholar
  18. 18.
    Alavi, B., Pahlavan, K.: Modeling of the toa-based distance measurement error using uwb indoor radio measurements. IEEE Communications Letters 10(4), 275–277 (2006)CrossRefGoogle Scholar
  19. 19.
    Chintalapudi, K., Padmanabha Iyer, A., Padmanabhan, V.N.: Indoor localization without the pain. In: Proceedings of the Sixteenth Annual International Conference on Mobile Computing and Networking, pp. 173–184. ACM (2010)Google Scholar
  20. 20.
    Evennou, F., Marx, F.: Advanced integration of wifi and inertial navigation systems for indoor mobile positioning. Eurasip Journal on Applied Signal Processing 2006, 164–164 (2006)Google Scholar
  21. 21.
    Leppäkoski, H., Collin, J., Takala, J.: Pedestrian navigation based on inertial sensors, indoor map, and wlan signals. Journal of Signal Processing Systems 71(3), 287–296 (2013)CrossRefGoogle Scholar
  22. 22.
    Pirkl, G., Lukowicz, P.: Robust, low cost indoor positioning using magnetic resonant coupling. In: Proceedings of the 2012 ACM Conference on Ubiquitous Computing, pp. 431–440. ACM (2012)Google Scholar
  23. 23.
    Zhou, B., Cheng, J., Sundholm, M., Lukowicz, P.: From smart clothing to smart table cloth: Design and implementation of a large scale, textile pressure matrix sensor. In: Maehle, E., Römer, K., Karl, W., Tovar, E. (eds.) ARCS 2014. LNCS, vol. 8350, pp. 159–170. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  24. 24.
    Cheng, J., Bannach, D., Adamer, K., Bernreiter, T., Lukowicz, P.: A wearable, conductive textile based user interface for hospital ward rounds document access. In: Roggen, D., Lombriser, C., Tröster, G., Kortuem, G., Havinga, P. (eds.) EuroSSC 2008. LNCS, vol. 5279, pp. 182–191. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  25. 25.
    Thrun, S., Burgard, W., Fox, D.: A real-time algorithm for mobile robot mapping with applications to multi-robot and 3d mapping. In: Proceedings of the IEEE International Conference on Robotics and Automation, ICRA 2000, vol. 1, pp. 321–328. IEEE (2000)Google Scholar
  26. 26.
    Brooks, R.R., Iyengar, S.S.: Multi-sensor fusion: fundamentals and applications with software. Prentice-Hall, Inc. (1998)Google Scholar
  27. 27.
    Yick, J., Mukherjee, B., Ghosal, D.: Wireless sensor network survey. Computer Networks 52(12), 2292–2330 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jingyuan Cheng
    • 1
  • Xiaoping Chen
    • 2
  • Paul Lukowicz
    • 1
  1. 1.German Research Center for Artificial Intelligence (DFKI)KaiserslauternGermany
  2. 2.Multi-Agent Systems LabUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations