Application Exploring of Ubiquitous Pressure Sensitive Matrix as Input Resource for Home-Service Robots

  • Jingyuan Cheng
  • Mathias Sundholm
  • Marco Hirsch
  • Bo Zhou
  • Sebastian Palacio
  • Paul Lukowicz
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 345)


We present how ubiquitous pressure sensor matrix can be used as information source for service-robots in two different applications. The textile pressure sensor, that utilizes the ubiquitousness of gravity, can be put on most surfaces in our environment to trace forces. As safety and human robot interaction are key factors for daily life service robots, we evaluated the pressure matrix in two scenarios: on the ground with toy furnitures demonstrating its capability for indoor localization and obstacle mapping, and on a sofa as an ubiquitous input device for giving commands to the robot in a natural way.


Ubiquitous Computing Service Robot Indoor Localization Human Robot Interaction Foreground Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    World Population Ageing 2013 report. Technical report, United Nations, Department of Economic and Social Affairs, Population Division (2013),
  2. 2.
    World Robotics Industrial Robots 2013 - Summary; Service Robots 2013 - Summary. Technical report, IFR Statistical Department, VDMA Robotics and Automation association (2013),
  3. 3.
    Zhou, B., Cheng, J., Sundholm, M., Lukowicz, P.: From smart clothing to smart table cloth: Design and implementation of a large scale, textile pressure matrix sensor. In: Maehle, E., Römer, K., Karl, W., Tovar, E. (eds.) ARCS 2014. LNCS, vol. 8350, pp. 159–170. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  4. 4.
    Sundholm, M., Cheng, J., Zhou, B., Sethi, A., Lukowicz, P.: Smart-mat: Recognizing and counting gym exercises with low-cost resistive pressure sensing matrix. In: The ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp 2014) (to appear)Google Scholar
  5. 5.
    Cheng, J., Sundholm, M., Zhou, B., Kreil, M., Lukowicz, P.: Recognizing subtle user activities and person identity with cheap resistive pressure sensing carpet. In: International Conference on Intelligent Environments (IE-14) (to appear)Google Scholar
  6. 6.
    Tan, H., Slivovsky, L., Pentland, A.: A sensing chair using pressure distribution sensors. IEEE/ASME Transactions on Mechatronics 6(3), 261–268 (2001)CrossRefGoogle Scholar
  7. 7.
    Verver, M., Van Hoof, J., Oomens, C., Wismans, J., Baaijens, F.: A finite element model of the human buttocks for prediction of seat pressure distributions. Computer Methods in Biomechanics and Biomedical Engineering 7(4), 193–203 (2004)CrossRefGoogle Scholar
  8. 8.
    Xie, X., Zheng, B., Xue, W.: Object identification on car seat based on rough sets. In: 2011 IEEE 3rd International Conference on Communication Software and Networks (ICCSN), pp. 157–159 (2011)Google Scholar
  9. 9.
    Kortelainen, J., van Gils, M., Parkka, J.: Multichannel bed pressure sensor for sleep monitoring. In: Computing in Cardiology (CinC), pp. 313–316 (2012)Google Scholar
  10. 10.
    Lokavee, S., Puntheeranurak, T., Kerdcharoen, T., Watthanwisuth, N., Tuantranont, A.: Sensor pillow and bed sheet system: Unconstrained monitoring of respiration rate and posture movements during sleep. In: 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 1564–1568 (2012)Google Scholar
  11. 11.
    De Rossi, S., Lenzi, T., Vitiello, N., Donati, M., Persichetti, A., Giovacchini, F., Vecchi, F., Carrozza, M.: Development of an in-shoe pressure-sensitive device for gait analysis. In: 33rd Annual International Conference of the IEEE EMBS (2011)Google Scholar
  12. 12.
    Xu, W., Huang, M.C., Amini, N., He, L., Sarrafzadeh, M.: ecushion: A textile pressure sensor array design and calibration for sitting posture analysis. IEEE Sensors Journal 13(10), 3926–3934 (2013)CrossRefGoogle Scholar
  13. 13.
    Alavi, B., Pahlavan, K.: Modeling of the toa-based distance measurement error using uwb indoor radio measurements. IEEE Communications Letters 10(4), 275–277 (2006)CrossRefGoogle Scholar
  14. 14.
    Chintalapudi, K., Padmanabha Iyer, A., Padmanabhan, V.N.: Indoor localization without the pain. In: Proceedings of the Sixteenth Annual International Conference on Mobile Computing and Networking, pp. 173–184. ACM (2010)Google Scholar
  15. 15.
    Evennou, F., Marx, F.: Advanced integration of wifi and inertial navigation systems for indoor mobile positioning. Eurasip Journal on Applied Signal Processing 2006, 164–164 (2006)Google Scholar
  16. 16.
    Leppäkoski, H., Collin, J., Takala, J.: Pedestrian navigation based on inertial sensors, indoor map, and wlan signals. Journal of Signal Processing Systems 71(3), 287–296 (2013)CrossRefGoogle Scholar
  17. 17.
    Pirkl, G., Lukowicz, P.: Robust, low cost indoor positioning using magnetic resonant coupling. In: Proceedings of the 2012 ACM Conference on Ubiquitous Computing, pp. 431–440. ACM (2012)Google Scholar
  18. 18.
    Sanpechuda, T., Kovavisaruch, L.: A review of rfid localization: Applications and techniques. In: 5th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, ECTI-CON 2008, vol. 2, pp. 769–772. IEEE (2008)Google Scholar
  19. 19.
    DeSouza, G.N., Kak, A.C.: Vision for mobile robot navigation: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(2), 237–267 (2002)CrossRefGoogle Scholar
  20. 20.
    Song, P., Yu, H., Winkler, S.: Vision-based 3d finger interactions for mixed reality games with physics simulation. In: Proceedings of The 7th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and Its Applications in Industry, p. 7. ACM (2008)Google Scholar
  21. 21.
    Bränzel, A., Holz, C., Hoffmann, D., Schmidt, D., Knaust, M., Lühne, P., Meusel, R., Richter, S., Baudisch, P.: Gravityspace: Tracking users and their poses in a smart room using a pressure-sensing floor. In: CHI 2013, Paris, France, April 27-May 2 (2013)Google Scholar
  22. 22.
    Ballagas, R., Borchers, J., Rohs, M., Sheridan, J.G.: The smart phone: a ubiquitous input device. IEEE Pervasive Computing 5(1), 70–77 (2006)CrossRefGoogle Scholar
  23. 23.
    Jaimes, A., Sebe, N.: Multimodal human–computer interaction: A survey. Computer Vision and Image Understanding 108(1), 116–134 (2007)CrossRefGoogle Scholar
  24. 24.
    Sefar (July 2014),
  25. 25.
    Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, Inc., Orlando (1983)Google Scholar
  26. 26.
    Papageorgiou, C.P., Oren, M., Poggio, T.: A general framework for object detection. In: Proceedings of the Sixth International Conference on Computer Vision, ICCV 1998, p. 555. IEEE Computer Society, Washington, DC (1998)Google Scholar
  27. 27.
    Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. ACM Comput. Surv. 38(4) (December 2006)Google Scholar
  28. 28.
    Wren, C., Azarbayejani, A., Darrell, T., Pentland, A.: Pfinder: Real-time tracking of the human body. IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 780–785 (1997)CrossRefGoogle Scholar
  29. 29.
    Kalman, R.E.: A new approach to linear filtering and prediction problems. Transactions of the ASME–Journal of Basic Engineering 82(Series D), 35–45 (1960)CrossRefGoogle Scholar
  30. 30.
    Buxton, W.A.S.: The three mirrors of interaction: a holistic approach to user interfaces. In: MacDonald, L.W., Vince, J. (eds.) Interacting with Virtual Environments, pp. 1–12. Wiley (1994)Google Scholar
  31. 31.
    Hu, M.K.: Visual pattern recognition by moment invariants. IRE Transactions on Information Theory 8(2), 179–187 (1962)CrossRefMATHGoogle Scholar
  32. 32.
    Trier, O.D., Jain, A.K., Taxt, T.: Feature extraction methods for character recognition-a survey. Pattern Recognition 29(4), 641–662 (1996)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jingyuan Cheng
    • 1
  • Mathias Sundholm
    • 1
  • Marco Hirsch
    • 1
  • Bo Zhou
    • 1
  • Sebastian Palacio
    • 1
  • Paul Lukowicz
    • 1
  1. 1.German Research Center for Artificial Intelligence (DFKI)KaiserslauternGermany

Personalised recommendations