Skip to main content

Generation of Air/SF6 Interface with Minimum Surface Feature by Soap Film Technique

  • Conference paper
29th International Symposium on Shock Waves 2 (ISSW 2013)

Included in the following conference series:

  • 1522 Accesses

Abstract

The Richtmyer-Meshkov (RM) instability occurs on an initially perturbed interface subjecting to a sudden acceleration by a shock [2]. Due to the deposition of baroclinic vorticity, the initial perturbation will grow with time, which generally intensifies the mixing between fluids and eventually induces turbulence in flow. Because of its academic significance in vortex dynamics and turbulent mixing as well as wide applications ranging from inertial confinement fusion, supernova explosions to supersonic combustion, the hydrodynamic instability becomes increasingly attractive. Specifically, several comprehensive reviews on this topic have been made [1, 2, 3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zabusky, N.J.: Vortex paradigm for accelerated inhomogeneous flows: visiometrics for the Rayleigh-Taylor and Richtmyer-Meshkov enviroments. Annu. Rev. Fluid Mech. 31, 495–536 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  2. Brouillette, M.: The Richtmyer-Meshkov instability. Annu. Rev. Fluid Mech. 34, 445–468 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  3. Ranjan, D., Oakley, J., Bonazza, R.: Shock-bubble interactions. Annu. Rev. Fluid Mech. 43, 117–140 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  4. Haas, J.F., Sturtevan, B.: Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities. J. Fluid Mech. 181, 41–76 (1987)

    Article  ADS  Google Scholar 

  5. Jacobs, J.W.: The dynamics of shock accelerated light and heavy gas cylinders. Phys. Fluids 5(9), 2239–2247 (1993)

    Article  ADS  Google Scholar 

  6. Tomkins, C., Kumar, S., Orlicz, G.C., Prestridge, K.P.: An experimental investigation of mixing mechanisms in shock-accelerated flow. J. Fluid Mech. 611, 131–150 (2008)

    Article  ADS  Google Scholar 

  7. Mariani, C., Vanderboomgaerde, M., Jourdan, G., Souffland, D., Houas, L.: Investigation of the Richtmyer-Meshkov instability with stereolithographed interfaces. Phys. Rev. Lett. 100, 254503 (2008)

    Article  ADS  Google Scholar 

  8. Layes, G., Jourdan, G., Houas, L.: Experimental study on a plane shock wave accelerating a gas bubble. Phys. Fluids 21, 074102 (2009)

    Article  Google Scholar 

  9. Zhai, Z., Si, T., Luo, X., Yang, J.: On the evolution of spherical gas interfaces accelerated by a planar shock wave. Phys. Fluids 23, 084104 (2011)

    Article  Google Scholar 

  10. Si, T., Zhai, Z., Yang, J., Luo, X.: Experimental investigation of reshocked spherical gas interfaces. Phys. Fluids 24, 054101 (2012)

    Article  ADS  Google Scholar 

  11. Haehn, N., Ranjan, D., Weber, C., Oakley, J., Rothamer, D., Bonazza, R.: Reacting shock bubble interaction. Combustion and Flame 159, 1339–1350 (2012)

    Article  Google Scholar 

  12. Zou, L., Liu, C., Tan, D., Huang, W., Luo, X.: On interaction of shock wave with elliptic gas cylinder. J. Visual. 13, 347–353 (2010)

    Article  Google Scholar 

  13. Weirs, V.G., Dupont, T., Plewa, T.: Three-dimensional effects in shock-cylinder interactions. Phys. Fluids 20, 044102 (2008)

    Article  Google Scholar 

  14. Isenberg, C.: The science of soap films and soap bubbles. Dover Publications, Inc., New York (1992)

    Google Scholar 

  15. Niederhaus, J.H.J., Greenough, J.A., Oakley, J.G., Ranjan, D., Anderson, M.H., Bonazza, R.: A computational parameter suty for the three-dimensional shock-bubble interaction. J. Fluid Mech. 594, 85–124 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Wang, X., Si, T., Luo, X., Yang, J. (2015). Generation of Air/SF6 Interface with Minimum Surface Feature by Soap Film Technique. In: Bonazza, R., Ranjan, D. (eds) 29th International Symposium on Shock Waves 2. ISSW 2013. Springer, Cham. https://doi.org/10.1007/978-3-319-16838-8_43

Download citation

Publish with us

Policies and ethics