Skip to main content

Shape Matching Using Point Context and Contour Segments

  • Conference paper
  • First Online:
Book cover Computer Vision -- ACCV 2014 (ACCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9006))

Included in the following conference series:

  • 2375 Accesses

Abstract

This paper proposes a novel method to generate robust contour partition points and applies them to produce point context and contour segment features for shape matching. The main idea is to match object shapes by matching contour partition points and contour segments. In contrast to typical shape context method, we do not consider the topological graph structure since our approach is only considering a small number of partition points rather than full contour points. The experimental results demonstrate that our method is able to produce correct results in the presence of articulations, stretching, and contour deformations. The most significant scientific contributions of this paper include (i) the introduction of a novel partition point extraction technique for point context and contour segments as well as (ii) a new fused similarity measure for object matching and recognition, and (iii) the impressive robustness of the method in an object retrieval scenario as well as in a real application for environmental microorganism recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Biederman, I., Ju, G.: Surface versus edge-based determinants of visual recognition. Cogn. Psychol. 20, 38–64 (1988)

    Article  Google Scholar 

  2. Yang, C., Tiebe, O., Pietsch, P., Feinen, C., Kelter, U., Grzegorzek, M.: Shape-based object retrieval by contour segment matching. In: International Conference on Image Processing (ICIP). IEEE Computer Society (2014, to appear)

    Google Scholar 

  3. Shotton, J., Blake, A., Cipolla, R.: Multiscale categorical object recognition using contour fragments. IEEE Trans. Pattern Anal. Mach. Intell. 30, 1270–1281 (2008)

    Article  Google Scholar 

  4. Bai, X., Latecki, L., Yu Liu, W.: Skeleton pruning by contour partitioning with discrete curve evolution. PAMI 29, 449–462 (2007)

    Article  Google Scholar 

  5. Bai, X., Liu, W., Tu, Z.: Integrating contour and skeleton for shape classification. In: 2009 IEEE 12th International Conference on Computer Vision Workshops (ICCV Workshops), pp. 360–367 (2009)

    Google Scholar 

  6. Ma, T., Latecki, L.: From partial shape matching through local deformation to robust global shape similarity for object detection. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1441–1448 (2011)

    Google Scholar 

  7. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Prentice Hall Press, Englewood Cliffs (2009)

    Google Scholar 

  8. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  9. Shotton, J., Blake, A., Cipolla, R.: Contour-based learning for object detection. ICCV 1, 503–510 (2005)

    Google Scholar 

  10. Nguyen, D.T., Ogunbona, P.O., Li, W.: A novel shape-based non-redundant local binary pattern descriptor for object detection. Pattern Recognit. 46, 1485–1500 (2013)

    Article  Google Scholar 

  11. Cao, Y., Zhang, Z., Czogiel, I., Dryden, I., Wang, S.: 2d nonrigid partial shape matching using mcmc and contour subdivision. In: CVPR, pp. 2345–2352 (2011)

    Google Scholar 

  12. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24, 509–522 (2002)

    Article  Google Scholar 

  13. Wang, X., Feng, B., Bai, X., Liu, W., Latecki, L.J.: Bag of contour fragments for robust shape classification, pp. 2116–2125 (2014)

    Google Scholar 

  14. Yang, X., Bai, X., Yang, X., Zeng, L.: An efficient quick algorithm for computing stable skeletons. In: 2nd International Congress on Image and Signal Processing, CISP 2009, pp. 1–5 (2009)

    Google Scholar 

  15. Goh, W.B.: Strategies for shape matching using skeletons. CVIU 110, 326–345 (2008)

    Google Scholar 

  16. Sebastian, T., Kimia, B.: Curves vs skeletons in object recognition. ICIP 3, 22–25 (2001)

    Google Scholar 

  17. Baseski, E., Erdem, A., Tari, S.: Dissimilarity between two skeletal trees in a context. Pattern Recognit. 42, 370–385 (2009)

    Article  MATH  Google Scholar 

  18. Bai, X., Latecki, L.: Path similarity skeleton graph matching. PAMI 30, 1282–1292 (2008)

    Article  Google Scholar 

  19. Zeng, J., Lakaemper, R., Yang, X., Li, X.: 2d shape decomposition based on combined skeleton-boundary features. In: Bebis, G., et al. (eds.) Advances in Visual Computing. LNCS, vol. 5359. Springer, Heidelberg (2008)

    Google Scholar 

  20. Hassouna, M.S., Farag, A.A.: MultiStencils fast marching methods: a highly accurate solution to the eikonal equation on cartesian domains. IEEE Trans. Pattern Anal. Mach. Intell. 29, 1563–1574 (2007)

    Article  Google Scholar 

  21. Kontschieder, P., Donoser, M., Bischof, H.: Beyond pairwise shape similarity analysis. In: Zha, H., Taniguchi, R., Maybank, S. (eds.) Computer Vision - ACCV 2009. LNCS, pp. 655–666. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  22. Sebastian, T., Klein, P., Kimia, B.: Recognition of shapes by editing their shock graphs. IEEE Trans. Pattern Anal. Mach. Intell. 26, 550–571 (2004)

    Article  Google Scholar 

  23. Latecki, L., Lakamper, R.: Convexity rule for shape decomposition based on discrete contour evolution. Comput. Vis. Image Underst. 73, 441–454 (1999)

    Article  Google Scholar 

  24. Hedrich, J., Yang, C., Feinen, C., Schaefer, S., Paulus, D., Grzegorzek, M.: Extended investigations on skeleton graph matching for object recognition. In: Burduk, R., Jackowski, K., Kurzynski, M., Wozniak, M., Zolnierek, A. (eds.) CORES 2013. AISC, vol. 226, pp. 371–381. Springer, Heidelberg (2013)

    Google Scholar 

  25. Li, C., Shirahama, K., Grzegorzek, M., Ma, F., Zhou, B.: Classification of environmental microorganisms in microscopic images using shape features and support vector machines. In: ICIP, pp. 2435–2439. IEEE Computer Society (2013)

    Google Scholar 

  26. Li, C., Shirahama, K., Czajkowska, J., Grzegorzek, M., Ma, F., Zhou, B.: A multi-stage approach for automatic classification of environmental microorganisms. In: IPCV, pp. 364–370. CSREA Press (2013)

    Google Scholar 

  27. Yang, C., Li, C., Tiebe, O., Shirahama, K., Grzegorzek, M.: Shape-based classification of environmental microorganisms. In: International Conference on Pattern Recognition (ICPR), pp. 3374–3379. IEEE Computer Society (2014)

    Google Scholar 

Download references

Acknowledgement

Research activities leading to this work have been supported by the China Scholarship Council, the German Research Foundation (DFG) within the Research Training Group 1564. We greatly thank M.Sc Chen Li from the University of Siegen for providing us with the Environmental Microorganism image dataset for experiments. We are also very grateful to Dr. Kimiaki Shirahama from University of Siegen for his guiding on significant technologies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Grzegorzek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Feinen, C., Yang, C., Tiebe, O., Grzegorzek, M. (2015). Shape Matching Using Point Context and Contour Segments. In: Cremers, D., Reid, I., Saito, H., Yang, MH. (eds) Computer Vision -- ACCV 2014. ACCV 2014. Lecture Notes in Computer Science(), vol 9006. Springer, Cham. https://doi.org/10.1007/978-3-319-16817-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16817-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16816-6

  • Online ISBN: 978-3-319-16817-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics