Campbell, L., Bobick, A.: Recognition of human body motion using phase space constraints. In: ICCV (1995)
Google Scholar
Bissacco, A., Chiuso, A., Ma, Y., Soatto, S.: Recognition of human gaits. In: CVPR (2001)
Google Scholar
Wu, S., Oreifej, O., Shah, M.: Action recognition in videos acquired by a moving camera using motion decomposition of Lagrangian particle trajectories. In: ICCV (2011)
Google Scholar
Efros, A., Berg., A., Mori, G., Malik, J.: Recognizing action at a distance. In: CVPR (2003)
Google Scholar
Thurau, C., Hlavac, V.: Pose primitive based human action recognition in videos or still images. In: CVPR (2008)
Google Scholar
Ikizler-Cinbis, N., Cinbis, R., Sclaroff, S.: Learning actions from the web. In: ICCV (2009)
Google Scholar
Eweiwi, A., Cheema, M.S., Bauckhage, C.: Discriminative joint non-negative matrix factorization for human action classification. In: Weickert, J., Hein, M., Schiele, B. (eds.) GCPR 2013. LNCS, vol. 8142, pp. 61–70. Springer, Heidelberg (2013)
CrossRef
Google Scholar
Laptev, I.: On space-time interest points. IJCV 64, 107–123 (2005)
CrossRef
Google Scholar
Willems, G., Tuytelaars, T., Van Gool, L.: An efficient dense and scale-invariant spatio-temporal interest point detector. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 650–663. Springer, Heidelberg (2008)
CrossRef
Google Scholar
Laptev, I., Marszalek, M., Schmid, C., Rozenfeld, B.: Learning realistic human actions from movies. In: CVPR (2008)
Google Scholar
Wang, H., Kläser, A., Schmid, C., Liu, C.L.: Dense trajectories and motion boundary descriptors for action recognition. Int. J. Comput. Vis. 103, 60–79 (2013)
CrossRef
MathSciNet
Google Scholar
Xia, L., Aggarwal, J.: Spatio-temporal depth cuboid similarity feature for activity recognition using depth camera. In: CVPR (2013)
Google Scholar
Ye, M., Zhang, Q., Wang, L., Zhu, J., Yang, R., Gall, J.: A survey on human motion analysis from depth data. In: Grzegorzek, M., Theobalt, C., Koch, R., Kolb, A. (eds.) Time-of-Flight and Depth Imaging. LNCS, vol. 8200, pp. 149–187. Springer, Heidelberg (2013)
Google Scholar
Yang, Y., Ramanan, D.: Articulated human detection with flexible mixtures of parts. IEEE Trans. Pattern Anal. Mach. Intell. 35, 2878–2890 (2013)
CrossRef
Google Scholar
Shotton, J., Girshick, R.B., Fitzgibbon, A.W., Sharp, T., Cook, M., Finocchio, M., Moore, R., Kohli, P., Criminisi, A., Kipman, A., Blake, A.: Efficient human pose estimation from single depth images. IEEE Trans. Pattern Anal. Mach. Intell. 35, 2821–2840 (2013)
CrossRef
Google Scholar
Yao, A., Gall, J., van Gool, L.: Coupled action recognition and pose estimation from multiple views. Int. J. Comput. Vis. 100, 16–37 (2012)
CrossRef
MATH
Google Scholar
Tran, K.N., Kakadiaris, I.A., Shah, S.K.: Modeling motion of body parts for action recognition. In: BMVC (2011)
Google Scholar
Jhuang, H., Gall, J., Zuffi, S., Schmid, C., Black, M.: Towards understanding action recognition. In: ICCV (2013)
Google Scholar
Wang, C., Wang, Y., Yuille, A.: An approach to pose-based action recognition. In: CVPR (2013)
Google Scholar
Wang, J., Liu, Z., Liu, Y., Yuan, J.: Mining actionlet ensemble for action recognition with depth cameras. In: CVPR (2012)
Google Scholar
Zanfir, M., Leordeanu, M., Sminchisescu, C.: The moving pose: an efficient 3D kinematics descriptor for low-latency action recognition and detection. In: ICCV (2013)
Google Scholar
Wanqing, L., Zhengyou, Z., Zicheng, L.: Action recognition based on a bag of 3D points. In: CVPRW (2010)
Google Scholar
Oreifej, O., Liu, Z.: Hon4d: Histogram of oriented 4D normals for activity recognition from depth sequences. In: CVPR (2013)
Google Scholar
Barker, M., Rayens, W.: Partial least squares for discrimination. J. Chemometr. 17, 166–173 (2003)
CrossRef
Google Scholar
Hajd, M.A., Gonzlez, J., Davis, L.: On partial least squares in head pose estimation: how to simultaneously deal with misalignment. In: CVPR (2012)
Google Scholar
Harada, T., Ushiku, Y., Yamashita, Y., Kuniyoshi, Y.: Discriminative spatial pyramid. In: CVPR (2011)
Google Scholar
Schwartz, W.R., Kembhavi, A., Harwood, D., Davis, L.S.: Human detection using partial least squares analysis. In: ICCV (2009)
Google Scholar
Sharma, A., Jacobs, D.: Bypassing synthesis: PLS for face recognition with pose, low-resolution and sketch. In: CVPR (2011)
Google Scholar
Rosipal, R., Be, P.P., Trejo, L.J., Cristianini, N., Shawe-Taylor, J., Williamson, B.: Kernel partial least squares regression in reproducing Kernel Hilbert space. JMLR 2, 97–123 (2001)
Google Scholar
Tenorth, M., Bandouch, J., Beetz, M.: The TUM Kitchen data set of everyday manipulation activities for motion tracking and action recognition. In: ICCV Workshops (2009)
Google Scholar
Li, M., Yuan, B.: 2D-LDA: a statistical linear discriminant analysis for image matrix. Pattern Recogn. Lett. 26, 527–532 (2005)
CrossRef
Google Scholar
Bauckhage, C., Käster, T.: Benefits of separable, multilinear discriminant classification. In: ICPR (2006)
Google Scholar
Wang, J., Wu, Y.: Learning maximum margin temporal warping for action recognition. In: ICCV (2013)
Google Scholar
Wang, J., Liu, Z., Chorowski, J., Chen, Z., Wu, Y.: Robust 3D action recognition with random occupancy patterns. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 872–885. Springer, Heidelberg (2012)
CrossRef
Google Scholar
Vemulapalli, R., Arrate, F., Chellappa, R.: Human action recognition by representing 3D skeletons as points in a lie group. In: CVPR (2014)
Google Scholar