Abstract
This paper proposes a new regularization term for optical flow related problems. The proposed regularizer properly handles rotation movements and it also produces good smoothness conditions on the flow field while preserving discontinuities. We also present a dual formulation of the new term that turns the minimization problem into a saddle-point problem that can be solved using a primal-dual algorithm. The performance of the new regularizer has been compared against the Total Variation (TV) in three different problems: optical flow estimation, optical flow inpainting, and optical flow completion from sparse samples. In the three situations the new regularizer improves the results obtained with the TV as a smoothing term.
Keywords
- Optical Flow
- Proposed Regularization Term
- Sparse Sampling
- Motion Inpainting
- Ground Truth Optical Flow
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options









References
Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artif. Intell. 17(1–3), 185–203 (1981)
Black, M.J., Anandan, P.: The robust estimation of multiple motions: parametric and piecewise-smooth flow fields. Comput. Vis. Image Underst. 63(1), 75–104 (1996)
Zimmer, H., Bruhn, A., Weickert, J.: Optic flow in harmony. Int. J. Comput. Vis. 93(3), 368–388 (2011)
Nagel, H.H., Enkelmann, W.: An Investigation of smoothness constraints for the estimation of displacement vector fields from image sequences. IEEE Trans. Pattern Anal. Mach. Intell. 8(5), 565–593 (1986)
Wedel, A., Cremers D., Pock, T., Bischof, H.: Structure-and motion-adaptative regularization for high accuracy optic flow. In: IEEE 12th International Conference on Computer Vision, pp. 1663–1668 (2009)
Werlberger, M., Trobin, W., Pock, T., Wedel, A., Cremers, D., Bischof, H.: Anisotropic Huber-L1 optical flow. In: Proceedings of the British Machine Vision Conference (2009)
Weickert, J., Schnörr, C.: A theoretical framework for convex regularizers in PDE-based computation of image motion. Int. J. Comput. Vis. 45(3), 245–264 (2001)
Trobin, W., Pock, T., Cremers, D., Bischof, H.: An unbiased second-order prior for high-accuracy motion estimation. In: Rigoll, G. (ed.) DAGM 2008. LNCS, vol. 5096, pp. 396–405. Springer, Heidelberg (2008)
Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. J. Phys. D Appl. Phys. 60, 259–268 (1992)
Zach, C., Pock, T., Bischof, H.: A duality based approach for realtime TV-L1 optical flow. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 214–223. Springer, Heidelberg (2007)
Wedel, A., Pock, T., Braun, J., Franke, U., Cremers, D.: Duality TV-L1 flow with fundamental matrix prior. In: 23rd International Conference Image and Vision Computing, pp. 1–6, New Zealand (2008)
Rosman, G., Shem-Tov, S., Bitton, D., Nir, T., Adiv, G., Kimmel, R., Feuer, A., Bruckstein, A.M.: Over-parameterized optical flow using a stereoscopic constraint. In: Bruckstein, A.M., ter Haar Romeny, B.M., Bronstein, A.M., Bronstein, M.M. (eds.) SSVM 2011. LNCS, vol. 6667, pp. 761–772. Springer, Heidelberg (2012)
Kondermann, C., Kondermann, D., Garbe, C.S.: Postprocessing of optical flows via surface measures and motion inpainting. In: Rigoll, G. (ed.) DAGM 2008. LNCS, vol. 5096, pp. 355–364. Springer, Heidelberg (2008)
Matsushita, Y., Ofek, E., Ge, W., Tang, X., Shum, H.-Y.: Full-frame video stabilization with motion inpainting. IEEE Trans. Pattern Anal. Mach. Intell. 28(7), 1150–1163 (2006)
Shiratori, T, Matsushita, Y.: Video completion by motion field transfer. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 411–418 (2006)
Chorin, A.J., Marsden, J.E.: A Mathematical Introduction to Fluid Mechanics: Texts in Applied Mathematics. Springer, New York (1990)
Strekalovskiy, E., Chambolle, A., Cremers, D.: Convex relaxation of vectorial problems with coupled regularization. SIAM J. Imaging Sci. 7, 294–336 (2014)
Berkels, B., Rätz, A., Rumpf, M., Voigt, A.: Extracting Grain boundaries and macroscopic deformations from images on atomic scale. J. Sci. Comput. 35(1), 1–23 (2007)
Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)
Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20, 89–97 (2004)
Sánchez Pérez, J., Meinhardt-Llopis, E., Facciolo, G.: TV-L1 Optical Flow Estimation. Image Processing On Line (IPOL), pp. 137–150 (2013)
Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. Int. J. Comput. Vis. 92, 1–31 (2010)
Butler, D.J., Wulff, J., Stanley, G.B., Black, M.J.: A naturalistic open source movie for optical flow evaluation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VI. LNCS, vol. 7577, pp. 611–625. Springer, Heidelberg (2012)
Bredies, K.: Recovering piecewise smooth multichannel images by minimization of convex functionals with total generalized variation penalty. In: Bruhn, A., Pock, T., Tai, X.-C. (eds.) Efficient Algorithms for Global Optimization Methods in Computer Vision. LNCS, vol. 8293, pp. 44–77. Springer, Heidelberg (2014)
Acknowledgement
We acknowledge partial support by MICINN project, reference MTM2012-30772, by GRC reference 2009 SGR 773 funded by the Generalitat de Catalunya, and by the ERC Advanced Grant INPAINTING (Grant agreement no.: 319899). The second author acknowledges partial support to the Ramón y Cajal program of the MINECO.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Palomares, R.P., Haro, G., Ballester, C. (2015). A Rotation-Invariant Regularization Term for Optical Flow Related Problems. In: Cremers, D., Reid, I., Saito, H., Yang, MH. (eds) Computer Vision -- ACCV 2014. ACCV 2014. Lecture Notes in Computer Science(), vol 9007. Springer, Cham. https://doi.org/10.1007/978-3-319-16814-2_20
Download citation
DOI: https://doi.org/10.1007/978-3-319-16814-2_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-16813-5
Online ISBN: 978-3-319-16814-2
eBook Packages: Computer ScienceComputer Science (R0)