Advertisement

DEPT: Depth Estimation by Parameter Transfer for Single Still Images

  • Xiu Li
  • Hongwei QinEmail author
  • Yangang Wang
  • Yongbing Zhang
  • Qionghai Dai
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9004)

Abstract

In this paper, we propose a new method for automatic depth estimation from color images using parameter transfer. By modeling the correlation between color images and their depth maps with a set of parameters, we get a database of parameter sets. Given an input image, we compute the high-level features to find the best matched image sets from the database. Then the set of parameters corresponding to the best match are used to estimate the depth of the input image. Compared to the past learning-based methods, our trained database only consists of trained features and parameter sets, which occupy little space.We evaluate our depth estimation method on the benchmark RGB-D (RGB + depth) datasets. The experimental results are comparable to the state-of-the-art, demonstrating the promising performance of our proposed method.

Keywords

Input Image Markov Random Field Depth Estimation Parameter Transfer Color Patch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

This work is supported by National Natural Science Foundation of China (Grant No. 71171121/61033005) and National 863 High Technology Research and Development Program of China (Grant No. 2012AA09A408).

Supplementary material

336656_1_En_4_MOESM1_ESM.pdf (45 kb)
Supplementary material (pdf 45 KB)

References

  1. 1.
    Liu, Q., Yang, Y., Ji, R., Gao, Y., Yu, L.: Cross-view down/up-sampling method for multiview depth video coding. IEEE Sig. Process. Lett. 19, 295–298 (2012)CrossRefGoogle Scholar
  2. 2.
    Li, F., Yu, J., Chai, J.: A hybrid camera for motion deblurring and depth map super-resolution. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition CVPR 2008, pp. 1–8. IEEE (2008)Google Scholar
  3. 3.
    Torralba, A., Oliva, A.: Depth estimation from image structure. IEEE Trans. Pattern Anal. Mach. Intell. 24, 1226–1238 (2002)CrossRefGoogle Scholar
  4. 4.
    Horry, Y., Anjyo, K.I., Arai, K.: Tour into the picture: using a spidery mesh interface to make animation from a single image. In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, pp. 225–232. ACM Press/Addison-Wesley Publishing Co. (1997)Google Scholar
  5. 5.
    Zhang, L., Dugas-Phocion, G., Samson, J.S., Seitz, S.M.: Single-view modelling of free-form scenes. J. Vis. Comput. Animation 13, 225–235 (2002)CrossRefzbMATHGoogle Scholar
  6. 6.
    Hoiem, D., Efros, A.A., Hebert, M.: Automatic photo pop-up. ACM Trans. Graph. (TOG) 24, 577–584 (2005). ACMCrossRefGoogle Scholar
  7. 7.
    Delage, E., Lee, H., Ng, A.Y.: A dynamic bayesian network model for autonomous 3d reconstruction from a single indoor image. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 2418–2428. IEEE (2006)Google Scholar
  8. 8.
    Saxena, A., Chung, S.H., Ng, A.Y.: Learning depth from single monocular images. In: Advances in Neural Information Processing Systems, pp. 1161–1168 (2005)Google Scholar
  9. 9.
    Saxena, A., Chung, S.H., Ng, A.Y.: 3-d depth reconstruction from a single still image. Int. J. Comput. Vis. 76, 53–69 (2008)CrossRefGoogle Scholar
  10. 10.
    Liu, B., Gould, S., Koller, D.: Single image depth estimation from predicted semantic labels. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1253–1260. IEEE (2010)Google Scholar
  11. 11.
    Li, C., Kowdle, A., Saxena, A., Chen, T.: Towards holistic scene understanding: feedback enabled cascaded classification models. In: Advances in Neural Information Processing Systems, pp. 1351–1359 (2010)Google Scholar
  12. 12.
    Karsch, K., Liu, C., Kang, S.B.: Depthtransfer: depth extraction from video using non-parametric sampling. IEEE Transactions on Pattern Analysis and Machine Intelligence (2014)Google Scholar
  13. 13.
    He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33, 2341–2353 (2011)CrossRefGoogle Scholar
  14. 14.
    Wang, Y., Wang, R., Dai, Q.: A parametric model for describing the correlation between single color images and depth maps. Signal Processing Letters 21 (2014)Google Scholar
  15. 15.
    Liu, C., Yuen, J., Torralba, A.: Nonparametric scene parsing via label transfer. IEEE Trans. Pattern Anal. Mach. Intell. 33, 2368–2382 (2011)CrossRefGoogle Scholar
  16. 16.
    Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial envelope. Int. J. Comput. Vis. 42, 145–175 (2001)CrossRefzbMATHGoogle Scholar
  17. 17.
    Saxena, A., Sun, M., Ng, A.Y.: Make3d: learning 3d scene structure from a single still image. IEEE Trans. Pattern Anal. Mach. Intell. 31, 824–840 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Xiu Li
    • 1
    • 2
  • Hongwei Qin
    • 1
    • 2
    Email author
  • Yangang Wang
    • 3
  • Yongbing Zhang
    • 1
    • 2
  • Qionghai Dai
    • 1
  1. 1.Department of AutomationTsinghua UniversityBeijingChina
  2. 2.Graduate School at ShenzhenTsinghua UniversityBeijingChina
  3. 3.Microsoft Research AsiaBeijingChina

Personalised recommendations