Saliency Detection via Nonlocal \(L_{0}\) Minimization

  • Yiyang Wang
  • Risheng Liu
  • Xiaoliang Song
  • Zhixun SuEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9004)


In this paper, by observing the intrinsic sparsity of saliency map for the image, we propose a novel nonlocal \(L_{0}\) minimization framework to extract the sparse geometric structure of the saliency maps for the natural images. Specifically, we first propose to use the \(k\)-nearest neighbors of superpixels to construct a graph in the feature space. The novel \(L_{0}\)-regularized nonlocal minimization model is then developed on the proposed graph to describe the sparsity of saliency maps. Finally, we develop a first order optimization scheme to solve the proposed non-convex and discrete variational problem. Experimental results on four publicly available data sets validate that the proposed approach yields significant improvement compared with state-of-the-art saliency detection methods.


Salient Object Salient Region Saliency Detection Alternate Direction Method Salient Object Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Risheng Liu is supported by the National Natural Science Foundation of China (No. 61300086), the China Postdoctoral Science Foundation (2013M530917, 2014T70249), the Fundamental Research Funds for the Central Universities (No. DUT12RC(3)67) and the Open Project Program of the State Key Laboratory of CAD&CG, Zhejiang University, Zhejiang, China (No. A1404). Zhixun Su is supported by National Natural Science Foundation of China (Nos. 61173103, 91230103) and National Science and Technology Major Project (No. 2013ZX04005021).

Supplementary material

336656_1_En_35_MOESM1_ESM.pdf (3 mb)
Supplementary material (pdf 3,067 KB)


  1. 1.
    Goferman, S., Zelnik-Manor, L., Tal, A.: Context-aware saliency detection. IEEE Trans. PAMI 34, 1915–1926 (2012)CrossRefGoogle Scholar
  2. 2.
    Chang, K.Y., Liu, T.L., Chen, H.T., Lai, S.H.: Fusing generic objectness and visual saliency for salient object detection. In: ICCV (2011)Google Scholar
  3. 3.
    Wei, Y., Wen, F., Zhu, W., Sun, J.: Geodesic saliency using background priors. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 29–42. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  4. 4.
    Shen, X., Wu, Y.: A unified approach to salient object detection via low rank matrix recovery. In: CVPR (2012)Google Scholar
  5. 5.
    Jiang, P., Ling, H., Yu, J., Peng, J.: Salient region detection by ufo: Uniqueness, focusness and objectness. In: ICCV (2013)Google Scholar
  6. 6.
    Cheng, M.M., Zhang, G.X., Mitra, N.J., Huang, X., Hu, S.M.: Global contrast based salient region detection. In: CVPR (2011)Google Scholar
  7. 7.
    Harel, J., Koch, C., Perona, P.: Graph-based visual saliency. In: NIPS (2006)Google Scholar
  8. 8.
    Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. PAMI 20, 1254–1259 (1998)CrossRefGoogle Scholar
  9. 9.
    Ma, Y.F., Zhang, H.J.: Contrast-based image attention analysis by using fuzzy growing. In: ACM Multimedia (2003)Google Scholar
  10. 10.
    Hou, X., Zhang, L.: Saliency detection: a spectral residual approach. In: CVPR (2007)Google Scholar
  11. 11.
    Achanta, R., Estrada, F.J., Wils, P., Süsstrunk, S.: Salient region detection and segmentation. In: Gasteratos, A., Vincze, M., Tsotsos, J.K. (eds.) ICVS 2008. LNCS, vol. 5008, pp. 66–75. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  12. 12.
    Achanta, R., Hemami, S., Estrada, F., Susstrunk, S.: Frequency-tuned salient region detection. In: CVPR (2009)Google Scholar
  13. 13.
    Jiang, H., Wang, J., Yuan, Z., Liu, T., Zheng, N., Li, S.: Automatic salient object segmentation based on context and shape prior. In: BMVC (2011)Google Scholar
  14. 14.
    Mai, L., Niu, Y., Liu, F.: Saliency aggregation: a data-driven approach. In: CVPR (2013)Google Scholar
  15. 15.
    Liu, T., Yuan, Z., Sun, J., Wang, J., Zheng, N., Tang, X., Shum, H.Y.: Learning to detect a salient object. IEEE Trans. PAMI 33, 353–367 (2011)CrossRefGoogle Scholar
  16. 16.
    Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. PAMI 34, 2274–2282 (2012)CrossRefGoogle Scholar
  17. 17.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. PAMI 22, 888–905 (2000)CrossRefGoogle Scholar
  18. 18.
    Yang, C., Zhang, L., Lu, H.: Graph-regularized saliency detection with convex-hull-based center prior. IEEE Signal Process. Lett. 20, 637–640 (2013)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Yang, C., Zhang, L., Lu, H., Ruan, X., Yang, M.H.: Saliency detection via graph-based manifold ranking. In: CVPR (2013)Google Scholar
  20. 20.
    Jiang, B., Zhang, L., Lu, H., Yang, C., Yang, M.H.: Saliency detection via absorbing markov chain. In: ICCV (2013)Google Scholar
  21. 21.
    Jiang, Z., Davis, L.S.: Submodular salient region detection. In: CVPR (2013)Google Scholar
  22. 22.
    Gopalakrishnan, V., Hu, Y., Rajan, D.: Random walks on graphs to model saliency in images. In: CVPR (2009)Google Scholar
  23. 23.
    Jia, Y., Han, M.: Category-independent object-level saliency detection. In: ICCV (2013)Google Scholar
  24. 24.
    Liu, R., Lin, Z., Shan, S.: Adaptive partial differential equation learning for visual saliency detection. In: CVPR (2014)Google Scholar
  25. 25.
    Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3, 1–122 (2011)CrossRefGoogle Scholar
  26. 26.
    Lin, Z., Liu, R., Su, Z.: Linearized alternating direction method with adaptive penalty for low-rank representation. In: NIPS (2011)Google Scholar
  27. 27.
    Liu, R., Lin, Z., Su, Z.: Linearized alternating direction method with parallel splitting and adaptive penalty for separable convex programs in machine learning. In: ACML (2013)Google Scholar
  28. 28.
    Xu, L., Lu, C., Xu, Y., Jia, J.: Image smoothing via \(l_{0}\) gradient minimization. ACM TOG 30, 174 (2011)Google Scholar
  29. 29.
    Xu, L., Zheng, S., Jia, J.: Unnatural \(l_{0}\) sparse representation for natural image deblurring. In: CVPR (2013)Google Scholar
  30. 30.
    Pan, J., Su, Z.: Fast \(l_{0}\)-regularized kernel estimation for robust motion deblurring. IEEE Sig. Process. Lett. 20, 841–844 (2013)CrossRefMathSciNetGoogle Scholar
  31. 31.
    Bougleux, S., Elmoataz, A., Melkemi, M.: Discrete regularization on weighted graphs for image and mesh filtering. In: Sgallari, F., Murli, A., Paragios, N. (eds.) SSVM 2007. LNCS, vol. 4485, pp. 128–139. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  32. 32.
    Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7, 1005–1028 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Einhäuser, W., König, P.: Does luminance-contrast contribute to a saliency map for overt visual attention? Eur. J. Neurosci. 17, 1089–1097 (2003)CrossRefGoogle Scholar
  34. 34.
    Perazzi, F., Krahenbuhl, P., Pritch, Y., Hornung, A.: Saliency filters: contrast based filtering for salient region detection. In: CVPR (2012)Google Scholar
  35. 35.
    Xie, Y., Lu, H.: Visual saliency detection based on bayesian model. In: ICIP (2011)Google Scholar
  36. 36.
    Bresson, X.: A short note for nonlocal tv minimization (2009)Google Scholar
  37. 37.
    Yan, Q., Xu, L., Shi, J., Jia, J.: Hierarchical saliency detection. In: CVPR (2013)Google Scholar
  38. 38.
    Zhai, Y., Shah, M.: Visual attention detection in video sequences using spatiotemporal cues. In: ACM Multimedia (2006)Google Scholar
  39. 39.
    Achanta, R., Susstrunk, S.: Saliency detection using maximum symmetric surround. In: ICIP (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Yiyang Wang
    • 1
  • Risheng Liu
    • 2
  • Xiaoliang Song
    • 1
  • Zhixun Su
    • 1
    Email author
  1. 1.School of Mathematical SciencesDalian University of TechnologyDalianChina
  2. 2.School of Software TechnologyDalian University of TechnologyDalianChina

Personalised recommendations