Singly-Bordered Block-Diagonal Form for Minimal Problem Solvers

  • Zuzana KukelovaEmail author
  • Martin Bujnak
  • Jan Heller
  • Tomáš Pajdla
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9004)


The Gröbner basis method for solving systems of polynomial equations became very popular in the computer vision community as it helps to find fast and numerically stable solutions to difficult problems. In this paper, we present a method that potentially significantly speeds up Gröbner basis solvers. We show that the elimination template matrices used in these solvers are usually quite sparse and that by permuting the rows and columns they can be transformed into matrices with nice block-diagonal structure known as the singly-bordered block-diagonal (SBBD) form. The diagonal blocks of the SBBD matrices constitute independent subproblems and can therefore be solved, i.e. eliminated or factored, independently. The computational time can be further reduced on a parallel computer by distributing these blocks to different processors for parallel computation. The speedup is visible also for serial processing since we perform \(O(n^3)\) Gauss-Jordan eliminations on smaller (usually two, approximately \({n \over 2} \times {n \over 2}\) and one \({n \over 3} \times {n \over 3}\)) matrices. We propose to compute the SBBD form of the elimination template in the preprocessing offline phase using hypergraph partitioning. The final online Gröbner basis solver works directly with the permuted block-diagonal matrices and can be efficiently parallelized. We demonstrate the usefulness of the presented method by speeding up solvers of several important minimal computer vision problems.



This work has been supported by the EC under project PRoViDE FP7-SPACE-2012-312377.


  1. 1.
    Aykanat, C., Pinar, A., Catalyurek, U.V.: Permuting sparse rectangular matrices into block-diagonal form. SIAM J. Scientific Comput. 12/2002 (2002)Google Scholar
  2. 2.
    Bujnak, M., Kukelova, Z., Pajdla, T.: A general solution to the P4P problem for camera with unknown focal length. In: CVPR (2008)Google Scholar
  3. 3.
    Bujnak, M., Kukelova, Z., Pajdla, T.: New efficient solution to the absolute pose problem for camera with unknown focal length and radial distortion. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part I. LNCS, vol. 6492, pp. 11–24. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  4. 4.
    Bujnak, M., Kukelova, Z., Pajdla, T.: Making minimal solvers fast. In: CVPR (2008)Google Scholar
  5. 5.
    Byröd, M., Josephson, K., Åström, K.: Improving numerical accuracy of Gröbner basis polynomial equation solver. In: ICCV (2007)Google Scholar
  6. 6.
    Byröd, M., Josephson, K., Åström, K.: A column-pivoting based strategy for monomial ordering in numerical Gröbner basis calculations. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 130–143. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  7. 7.
    Byröd, M., Brown, M., Åström, K.: Minimal solutions for panoramic stitching with radial distortion. In: BMVC (2009)Google Scholar
  8. 8.
    Byröd, M.: Numerical methods for geometric vision: From minimal to large scale problems. Ph.D. Thesis, Centre for Mathematical Sciences, Lund University (2010)Google Scholar
  9. 9.
    Catalyurek, U.V., Aykanat, C.: PaToH: Partitioning Tool for Hypergraphs, Version 3.1 (2011)Google Scholar
  10. 10.
    Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry, vol. 185, 2nd edn. Springer, Berlin, Heidelberg, New York (2005) zbMATHGoogle Scholar
  11. 11.
    Fiduccia, C.M., Mattheyses, R.M.: A linear-time heuristic for improving network partitions. In: 19th ACM/IEEE Design Automation Conference (1982)Google Scholar
  12. 12.
    Fischler, M.A., Bolles, R.C.: Random Sample Consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Comm. ACM 24(6), 381–395 (1981)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Garey, M., Johnson, D., Stockmeyer, L.: Some simplified NP-complete graph problems. Theor. Comput. Sci. 1, 237–267 (1976)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Hook, D., McAree, P.: Using sturm sequences to bracket real roots of polynomial equations. In: Graphic Gems I, pp. 416–423. Academic Press (1990)Google Scholar
  15. 15.
    Josephson, K., Byröd, M.: Pose estimation with radial distortion and unknown focal length. In: CVPR 2009 (2009)Google Scholar
  16. 16.
  17. 17.
    Kuehnle, K., Mayr, E.: Exponential space computation of Groebner bases. In: Proceedings of ISSAC. ACM (1996)Google Scholar
  18. 18.
    Kukelova, Z., Bujnak, M., Pajdla, T.: Automatic generator of minimal problem solvers. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 302–315. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  19. 19.
    Kukelova, Z., Byröd, M., Josephson, K., Pajdla, T., Åström, K.: Fast and robust numerical solutions to minimal problems for cameras with radial distortion. Comput. Vis. Image Underst. 114(2), 234–244 (2010)CrossRefGoogle Scholar
  20. 20.
    Kushal, A., Agarwal, S.: Visibility based preconditioning for bundle adjustment. In: CVPR 2012Google Scholar
  21. 21.
    Naroditsky, O., Daniilidis, K.: Optimizing polynomial solvers for minimal geometry problems. In: ICCV 2011Google Scholar
  22. 22.
    Nister, D.: An efficient solution to the five-point relative pose. IEEE PAMI 26(6), 756–770 (2004)CrossRefGoogle Scholar
  23. 23.
    Stetter, H.J.: Numerical Polynomial Algebra. SIAM, Philadelphia (2004)CrossRefzbMATHGoogle Scholar
  24. 24.
    Stewenius, H., Nister, D., Kahl, F., Schaffalitzky, F.: A minimal solution for relative pose with unknown focal length. In: CVPR 2005Google Scholar
  25. 25.
    Stewenius, H., Engels, C., Nister, D.: Recent developments on direct relative orientation. ISPRS J. Photogrammetry Remote Sens. 60, 284–294 (2006)CrossRefGoogle Scholar
  26. 26.
    Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment – A modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) ICCV-WS 1999. LNCS, vol. 1883, pp. 298–375. Springer, Heidelberg (2000) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Zuzana Kukelova
    • 1
    • 2
    Email author
  • Martin Bujnak
    • 3
  • Jan Heller
    • 1
  • Tomáš Pajdla
    • 1
  1. 1.Czech Technical University in PraguePragueCzech Republic
  2. 2.Microsoft Research Ltd.CambridgeUK
  3. 3.Capturing Reality s.r.o.BratislavaSlovakia

Personalised recommendations