Advertisement

A Minimal Solution to Relative Pose with Unknown Focal Length and Radial Distortion

  • Fangyuan JiangEmail author
  • Yubin Kuang
  • Jan Erik Solem
  • Kalle Åström
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9004)

Abstract

In this paper, we study the minimal problem of estimating the essential matrix between two cameras with constant but unknown focal length and radial distortion. This problem is of both theoretical and practical interest and it has not been solved previously. We have derived a fast and stable polynomial solver based on Gröbner basis method. This solver enables simultaneous auto-calibration of focal length and radial distortion for cameras. For experiments, the numerical stability of the solver is demonstrated on synthetic data. We also evaluate on real images using either RANSAC or kernel voting. Compared with the standard minimal solver, which does not model the radial distortion, our proposed solver both finds a larger set of geometrically correct correspondences on distorted images and gives an accurate estimate of the radial distortion and focal length.

References

  1. 1.
    Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: exploring photo collections in 3d. In: SIGGRAPH 2006: ACM SIGGRAPH 2006 Papers, pp. 835–846. ACM, New York (2006)Google Scholar
  2. 2.
    Fitzgibbon, A.W.: Simultaneous linear estimation of multiple view geometry and lens distortion. In: Proceedings of Computer Vision and Pattern Recognition Conference, pp. 125–132 (2001)Google Scholar
  3. 3.
    McGlone, J., Mikhail, E., Bethel, J., Mullen, R.: Manual of Photogrammetry. American Society for Photogrammetry and Remote Sensing, Maryland (2004)Google Scholar
  4. 4.
    Tsai, R.Y.: A versatile camera calibration technique for high-accuracy 3d machine vision metrology using off-the-shelf tv cameras and lenses. IEEE J. Rob. Autom. 3, 323–344 (1987)CrossRefGoogle Scholar
  5. 5.
    Devernay, F., Faugeras, O.D.: Straight lines have to be straight. Mach. Vis. Appl. 13, 14–24 (2001)CrossRefGoogle Scholar
  6. 6.
    Swaminathan, R., Nayar, S.K.: Nonmetric calibration of wide-angle lenses and polycameras. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1172–1178 (2000)CrossRefGoogle Scholar
  7. 7.
    Kang, S.: Semiautomatic methods for recovering radial distortion parameters from a single image. Cambridge Research Laboratory technical report series. Digital, Cambridge Research Laboratory (1997)Google Scholar
  8. 8.
    Barreto, J., Daniilidis, K.: Fundamental matrix for cameras with radial distortion. In: IEEE International Conference on Computer Vision, Beijing, China (2005)Google Scholar
  9. 9.
    Li, H., Hartley, R.: A non-iterative method for correcting lens distortion from nine point correspondences. In: OMNIVIS 2005 (2005)Google Scholar
  10. 10.
    Stein, G.P.: Lens distortion calibration using point correspondences. In: CVPR, pp. 602–608 (1997)Google Scholar
  11. 11.
    Kukelova, Z., Pajdla, T.: A minimal solution to the autocalibration of radial distortion. In: Proceedings of the Conference on Computer Vision and Pattern Recognition (2007)Google Scholar
  12. 12.
    Kukelova, Z., Pajdla, T.: A minimal solution to radial distortion autocalibration. IEEE Trans. Pattern Anal. Mach. Intell. 33, 2410–2422 (2011)CrossRefGoogle Scholar
  13. 13.
    Kukelova, Z., Byröd, M., Josephson, K., Pajdla, T., Åström, K.: Fast and robust numerical solutions to minimal problems for cameras with radial distortion. Comput. Vis. Image Underst. 114, 234–244 (2010)CrossRefGoogle Scholar
  14. 14.
    Kuang, Y., Solem, J.E., Kahl, F., Åström, K.: Minimal solvers for relative pose with a single unknown radial distortion. In: Proceedings of the Conference on Computer Vision and Pattern Recognition (2014)Google Scholar
  15. 15.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004)CrossRefGoogle Scholar
  16. 16.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 381–395 (1981)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Byröd, M., Josephson, K., Åström, K.: Fast and stable polynomial equation solving and its application to computer vision. Int. J. Comput. Vis. 84, 237–255 (2009)CrossRefGoogle Scholar
  18. 18.
    Kukelova, Z., Pajdla, T.: Two minimal problems for cameras with radial distortion. In: OMNIVIS (2007)Google Scholar
  19. 19.
    Josephson, K., Byröd, M.: Pose estimation with radial distortion and unknown focal length. In: Proceedings of the Conference on Computer Vision and Pattern Recognition, San Fransisco, USA (2009)Google Scholar
  20. 20.
    Kukelova, Z., Bujnak, M., Pajdla, T.: Real-time solution to the absolute pose problem with unknown radial distortion and focal length. In: IEEE International Conference on Computer Vision, ICCV 2013, Sydney, Australia, pp. 2816–2823, 1–8 December 2013 (2013)Google Scholar
  21. 21.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  22. 22.
    Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry. Springer, New York (1998)CrossRefzbMATHGoogle Scholar
  23. 23.
    Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms. Springer, New York (2007)CrossRefzbMATHGoogle Scholar
  24. 24.
    Grayson, D., Stillman, M.: Macaulay 2 (1993–2002). http://www.math.uiuc.edu/Macaulay2/ (An open source computer algebra software)
  25. 25.
    Kuang, Y., Åström, K.: Numerically Stable Optimization of Polynomial Solvers for Minimal Problems. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 100–113. Springer, Heidelberg (2012)Google Scholar
  26. 26.
    Naroditsky, O., Daniilidis, K.: Optimizing polynomial solvers for minimal geometry problems. In: ICCV, pp. 975–982 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Fangyuan Jiang
    • 1
    Email author
  • Yubin Kuang
    • 2
  • Jan Erik Solem
    • 1
    • 2
  • Kalle Åström
    • 1
  1. 1.Centre for Mathematical SciencesLund UniversityLundSweden
  2. 2.Mapillary ABLundSweden

Personalised recommendations