Advertisement

Elastic Shape Analysis of Boundaries of Planar Objects with Multiple Components and Arbitrary Topologies

  • Sebastian Kurtek
  • Hamid LagaEmail author
  • Qian Xie
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9004)

Abstract

We consider boundaries of planar objects as level set distance functions and present a Riemannian metric for their comparison and analysis. The metric is based on a parameterization-invariant framework for shape analysis of quadrilateral surfaces. Most previous Riemannian formulations of 2D shape analysis are restricted to curves that can be parameterized with a single parameter domain. However, 2D shapes may contain multiple connected components and many internal details that cannot be captured with such parameterizations. In this paper we propose to register planar curves of arbitrary topologies by utilizing the re-parameterization group of quadrilateral surfaces. The criterion used for computing this registration is a proper distance, which can be used to quantify differences between the level set functions and is especially useful in classification. We demonstrate this framework with multiple examples using toy curves, medical imaging data, subsets of the TOSCA data set, 2D hand-drawn sketches, and a 2D version of the SHREC07 data set. We demonstrate that our method outperforms the state-of-the-art in the classification of 2D sketches and performs well compared to other state-of-the-art methods on complex planar shapes.

Keywords

Binary Image Planar Object Planar Curf Rotational Alignment Deformation Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

This work is partially funded by the Australian Research Council (ARC) and the South Australian Government, Department of Further Education, Employment, Science and Technology.

Supplementary material

336656_1_En_29_MOESM1_ESM.pdf (2.7 mb)
Supplementary material (pdf 2,774 KB)

References

  1. 1.
    Younes, L.: Computable elastic distance between shapes. SIAM J. Appl. Math. 58, 565–586 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Younes, L., Michor, P.W., Shah, J., Mumford, D., Lincei, R.: A metric on shape space with explicit geodesics. Mat. E Applicazioni 19, 25–57 (2008)zbMATHGoogle Scholar
  3. 3.
    Srivastava, A., Klassen, E., Joshi, S.H., Jermyn, I.H.: Shape analysis of elastic curves in Euclidean spaces. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1415–1428 (2011)CrossRefGoogle Scholar
  4. 4.
    Jermyn, I.H., Kurtek, S., Klassen, E., Srivastava, A.: Elastic shape matching of parameterized surfaces using square root normal fields. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) Computer Vision – ECCV 2012. LNCS, vol. 7576, pp. 804–817. Springer, Berlin (2012)CrossRefGoogle Scholar
  5. 5.
    Kurtek, S., Klassen, E., Gore, J.C., Ding, Z., Srivastava, A.: Elastic geodesic paths in shape space of parameterized surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 34, 1717–1730 (2012)CrossRefGoogle Scholar
  6. 6.
    Kurtek, S., Srivastava, A., Klassen, E., Laga, H.: Landmark-guided elastic shape analysis of spherically-parameterized surfaces. Comput. Graph. Forum (Proc. Eurographics) 32, 429–438 (2013)CrossRefGoogle Scholar
  7. 7.
    Fuchs, M., Jüttler, B., Scherzer, O., Yang, H.: Shape metrics based on elastic deformations. J. Math. Imaging Vis. 35, 86–102 (2009)CrossRefGoogle Scholar
  8. 8.
    Eitz, M., Hays, J., Alexa, M.: How do humans sketch objects? ACM Trans. Graph. (Proc. SIGGRAPH) 31, 44:1–44:10 (2012)Google Scholar
  9. 9.
    Giorgi, D., Biasotti, S., Paraboschi, L.: Shape retrieval contest 2007: Watertight models track. In: SHREC competition 8 (2007)Google Scholar
  10. 10.
    Kendall, D.G.: Shape manifolds, Procrustean metrics, and complex projective spaces. Bull. London Math. Soc. 16, 81–121 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Dryden, I.L., Mardia, K.V.: Statistical Shape Analysis. John Wiley & Son, New York (1998)zbMATHGoogle Scholar
  12. 12.
    Zahn, C.T., Roskies, R.Z.: Fourier descriptors for plane closed curves. IEEE Trans. Comput. 21, 269–281 (1972)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Klassen, E., Srivastava, A., Mio, W., Joshi, S.H.: Analysis of planar shapes using geodesic paths on shape spaces. IEEE Trans. Pattern Anal. Mach. Intell. 26, 372–383 (2004)CrossRefGoogle Scholar
  14. 14.
    Joshi, S.H., Klassen, E., Srivastava, A., Jermyn, I.H.: Removing shape-preserving transformations in Square-Root Elastic (SRE) framework for shape analysis of curves. In: Yuille, A.L., Zhu, S.-C., Cremers, D., Wang, Y. (eds.) EMMCVPR 2007. LNCS, vol. 4679, pp. 387–398. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  15. 15.
    Kerr, G., Kurtek, S., Srivastava, A.: A joint model for boundaries of multiple anatomical parts. In: SPIE Medical Imaging (2011)Google Scholar
  16. 16.
    Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, New York (2003) CrossRefzbMATHGoogle Scholar
  17. 17.
    Paragios, N., Rousson, M., Ramesh, V.: Non-rigid registration using distance functions. Comput. Vis. Image Underst. 89, 142–165 (2003)CrossRefzbMATHGoogle Scholar
  18. 18.
    Munim, H.A.E., Farag, A.: Shape representation and registration using vector distance functions. In: IEEE Conf. on Computer Vision and Pattern Recognition (2007)Google Scholar
  19. 19.
    Fahmi, R., Farag, A.A.: A global-to-local 2D shape registration in implicit spaces using level sets. In: IEEE International Conference on Image Processing. vol. 6, p. VI-237. IEEE (2007)Google Scholar
  20. 20.
    Yezzi, A.J., Soatto, S.: Deformotion: Deforming motion, shape average and the joint registration and approximation of structures in images. Int. J. Comput. Vis. 53, 153–167 (2003)CrossRefGoogle Scholar
  21. 21.
    Glaunes, J., Qiu, A., Miller, M.I., Younes, L.: Large deformation diffeomorphic metric curve mapping. Int. J. Comput. Vis. 80, 317–336 (2008)CrossRefGoogle Scholar
  22. 22.
    Huttenlocher, D.P., Klanderman, G.A., Kl, G.A., Rucklidge, W.J.: Comparing images using the Hausdorff distance. IEEE Trans. Pattern Anal. Mach. Intell. 15, 850–863 (1993)CrossRefGoogle Scholar
  23. 23.
    Davis, E.: Continuous shape transformation and metrics on regions. Fundamenta Informaticae 46, 31–54 (2001)zbMATHMathSciNetGoogle Scholar
  24. 24.
    Berkels, B., Linkmann, G., Rumpf, M.: Shape median based on symmetric area differences. In: Deussen, O., Keim, D.A., Saupe, D. (eds.) Vision, Modeling and Visualization, pp. 399–407 (2008)Google Scholar
  25. 25.
    Ling, H., Jacobs, D.W.: Shape classification using the inner-distance. IEEE Trans. Pattern Anal. Mach. Intell. 29, 286–299 (2007)CrossRefGoogle Scholar
  26. 26.
    Tabia, H., Laga, H., Picard, D., Gosselin, P.H., et al.: Covariance descriptors for 3D shape matching and retrieval. In: IEEE Conference on Computer Vision and Pattern Recognition (2014)Google Scholar
  27. 27.
    Wang, X., Feng, B., Bai, X., Liu, W., Jan Latecki, L.: Bag of contour fragments for robust shape classification. Pattern Recogn. 47, 2116–2125 (2014)CrossRefGoogle Scholar
  28. 28.
    Laga, H., Takahashi, H., Nakajima, M.: Spherical wavelet descriptors for content-based 3D model retrieval. In: IEEE International Conference on Shape Modeling and Applications, pp. 15–15. IEEE (2006)Google Scholar
  29. 29.
    Laga, H., Nakajima, M.: Supervised learning of salient 2D views of 3D models. J. Soc. Art Sci. 7, 124–131 (2008)CrossRefGoogle Scholar
  30. 30.
    Laga, H.: Semantics-driven approach for automatic selection of best views of 3D shapes. In: Proceedings of the 3rd Eurographics Workshop on 3D Object Retrieval, Eurographics Association, pp. 15–22 (2010)Google Scholar
  31. 31.
    Kurtek, S., Klassen, E., Ding, Z., Srivastava, A.: A novel Riemannian framework for shape analysis of 3D objects. In: IEEE Conference on Computer Vision Pattern Recognition, pp. 1625–1632 (2010)Google Scholar
  32. 32.
    Xie, Q., Kurtek, S., Christensen, G.E., Ding, Z., Klassen, E., Srivastava, A.: A novel framework for metric-based image registration. In: Dawant, B.M., Christensen, G.E., Fitzpatrick, J.M., Rueckert, D. (eds.) WBIR 2012. LNCS, vol. 7359, pp. 276–285. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  33. 33.
    Dubuisson, M.P., Jain, A.K.: A modified Hausdorff distance for object matching. Int. Conf. Pattern Recogn. 1, 566–568 (1994)CrossRefGoogle Scholar
  34. 34.
    Laga, H., Kurtek, S., Srivastava, A., Golzarian, M., Miklavcic, S.J.: A Riemannian elastic metric for shape-based plant leaf classification. In: DICTA, pp. 1–7 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of StatisticsThe Ohio State UniversityColumbusUSA
  2. 2.Phenomics and Bioinformatics Research CentreUniversity of South AustraliaAdelaideAustralia
  3. 3.Australian Centre for Plant Functional Genomics, PtyLtdAdelaideAustralia
  4. 4.Department of StatisticsFlorida State UniversityTallahasseeFlorida

Personalised recommendations