Advertisement

A Homography Formulation to the 3pt Plus a Common Direction Relative Pose Problem

  • Olivier Saurer
  • Pascal Vasseur
  • Cedric Demonceaux
  • Friedrich FraundorferEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9004)

Abstract

In this paper we present an alternative formulation for the minimal solution to the 3pt plus a common direction relative pose problem. Instead of the commonly used epipolar constraint we use the homography constraint to derive a novel formulation for the 3pt problem. This formulation allows the computation of the normal vector of the plane defined by the three input points without any additional computation in addition to the standard motion parameters of the camera. We show the working of the method on synthetic and real data sets and compare it to the standard 3pt method and the 5pt method for relative pose estimation. In addition we analyze the degenerate conditions for the proposed method.

Notes

Acknowledgment

This work has been partially supported by Projet ANR Blanc International DrAACaR-ANR-11-IS03-0003 and a Google Award.

References

  1. 1.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004). ISBN: 0521540518CrossRefzbMATHGoogle Scholar
  2. 2.
    Nistér, D.: An efficient solution to the five-point relative pose problem. IEEE Trans. Pattern Anal. Mach. Intell. 26, 756–777 (2004)CrossRefGoogle Scholar
  3. 3.
    Scaramuzza, D.: 1-point-ransac structure from motion for vehicle-mounted cameras by exploiting non-holonomic constraints. Int. J. Comput. Vis. 95, 74–85 (2011)CrossRefGoogle Scholar
  4. 4.
    Kneip, L., Martinelli, A., Weiss, S., Scaramuzza, D., Siegwart, R.: Closed-form solution for absolute scale velocity determination combining inertial measurements and a single feature correspondence. In: IEEE International Conference on Robotics and Automation, ICRA 2011, pp. 4546–4553. Shanghai, China, 9–13 May 2011Google Scholar
  5. 5.
    Viéville, T., Clergue, E., Facao, P.D.S.: Computation of ego-motion and structure from visual and inertial sensors using the vertical cue. In: Proceedings, Fourth International Conference on Computer Vision, pp. 591–598. IEEE (1993)Google Scholar
  6. 6.
    Corke, P.: An inertial and visual sensing system for a small autonomous helicopter. J. Rob. Syst. 21, 43–51 (2004)CrossRefGoogle Scholar
  7. 7.
    Lobo, J., Dias, J.: Vision and inertial sensor cooperation using gravity as a vertical reference. IEEE Trans. Pattern Anal. Mach. Intell. 25, 1597–1608 (2003)CrossRefGoogle Scholar
  8. 8.
    Weiss, S., Siegwart, R.: Real-time metric state estimation for modular vision-inertial systems. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 4531–4537. IEEE (2011)Google Scholar
  9. 9.
    Domke, J., Aloimonos, Y.: Integration of visual and inertial information for egomotion: a stochastic approach. In: Proceedings 2006 IEEE International Conference on Robotics and Automation. ICRA 2006, pp. 2053–2059. IEEE (2006)Google Scholar
  10. 10.
    Kalantari, M., Hashemi, A., Jung, F., Guédon, J.P.: A new solution to the relative orientation problem using only 3 points and the vertical direction. J. Math. Imaging Vis. 39, 259–268 (2011)CrossRefzbMATHGoogle Scholar
  11. 11.
    Antone, M.E., Teller, S.J.: Automatic recovery of relative camera rotations for urban scenes. In: CVPR, pp. 2282–2289. IEEE Computer Society (2000)Google Scholar
  12. 12.
    Oreifej, O., da Vitoria Lobo, N., Shah, M.: Horizon constraint for unambiguous uav navigation in planar scenes. In: IEEE International Conference on Robotics and Automation, ICRA 2011, pp. 1159–1165. Shanghai, China, 9–13 May 2011Google Scholar
  13. 13.
    Fraundorfer, F., Tanskanen, P., Pollefeys, M.: A minimal case solution to the calibrated relative pose problem for the case of two known orientation angles. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 269–282. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  14. 14.
    Naroditsky, O., Zhou, X.S., Gallier, J.H., Roumeliotis, S.I., Daniilidis, K.: Two efficient solutions for visual odometry using directional correspondence. IEEE Trans. Pattern Anal. Mach. Intell. 34, 818–824 (2012)CrossRefGoogle Scholar
  15. 15.
    Chum, O., Werner, T., Matas, J.: Two-view geometry estimation unaffected by a dominant plane. In: CVPR (1), pp. 772–779. IEEE Computer Society (2005)Google Scholar
  16. 16.
    Szeliski, R., Torr, P.: Geometrically constrained structure from motion: points on planes. In: Koch, R., Van Gool, L. (eds.) SMILE 1998. LNCS, vol. 1506, pp. 171–186. Springer, Heidelberg (1998) CrossRefGoogle Scholar
  17. 17.
    Olivier Saurer, F.F., Pollefeys, M.: Homography based visual odometry with known vertical direction and weak manhattan world assumption. In: IEEE/IROS Workshop on Visual Control of Mobile Robots (ViCoMoR 2012) (2012)Google Scholar
  18. 18.
    Ortin, D., Montiel, J.: Indoor robot motion based on monocular images. Robotica 19, 331–342 (2001)CrossRefGoogle Scholar
  19. 19.
    Troiani, C., Martinelli, A., Laugier, C., Scaramuzza, D.: 1-point-based monocular motion estimation for computationally-limited micro aerial vehicles. In: 2013 European Conference on Mobile Robots (ECMR), pp. 13–18. IEEE (2013)Google Scholar
  20. 20.
    Bazin, J.C., Demonceaux, C., Vasseur, P., Kweon, I.: Rotation estimation and vanishing point extraction by omnidirectional vision in urban environment. Int. J. Robot. Res. 31, 63–81 (2012)CrossRefGoogle Scholar
  21. 21.
    Li, B., Heng, L., Lee, G.H., Pollefeys, M.: A 4-point algorithm for relative pose estimation of a calibrated camera with a known relative rotation angle. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2013, Tokyo, Japan (2013)Google Scholar
  22. 22.
    Troiani, C., Martinelli, A., Laugier, C., Scaramuzza, D.: 2-point-based outlier rejection for camera-imu systems with applications to micro aerial vehicles. In: IEEE InternationalConference on Robotics and Automation (ICRA), Hong Kong (2014)Google Scholar
  23. 23.
    Martinelli, A.: Closed-form solution of visual-inertial structure from motion. Int. J. Comput. Vis. 106, 138–152 (2014)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Lee, G.H., Fraundorfer, F., Pollefeys, M.: Mav visual slam with plane constraint. In: ICRA, pp. 3139–3144. IEEE (2011)Google Scholar
  25. 25.
    Cox, D.A., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3/e (Undergraduate Texts in Mathematics). Springer-Verlag, Secaucus (2007) CrossRefGoogle Scholar
  26. 26.
    Kukelova, Z., Bujnak, M., Pajdla, T.: Automatic generator of minimal problem solvers. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 302–315. Springer, Heidelberg (2008) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Olivier Saurer
    • 1
  • Pascal Vasseur
    • 2
  • Cedric Demonceaux
    • 3
  • Friedrich Fraundorfer
    • 4
    Email author
  1. 1.ETHZürichSwitzerland
  2. 2.LITIS - Université de RouenRouenFrance
  3. 3.Le2iUMR CNRS 6306, Université de BourgogneBourgogneFrance
  4. 4.Remote Sensing TechnologyTechnische Universität MünchenMunichGermany

Personalised recommendations