Advertisement

Performance Evaluation of 3D Local Feature Descriptors

  • Yulan GuoEmail author
  • Mohammed Bennamoun
  • Ferdous Sohel
  • Min Lu
  • Jianwei Wan
  • Jun Zhang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9004)

Abstract

A number of 3D local feature descriptors have been proposed in literature. It is however, unclear which descriptors are more appropriate for a particular application. This paper compares nine popular local descriptors in the context of 3D shape retrieval, 3D object recognition, and 3D modeling. We first evaluate these descriptors on six popular datasets in terms of descriptiveness. We then test their robustness with respect to support radius, Gaussian noise, shot noise, varying mesh resolution, image boundary, and keypoint localization errors. Our extensive tests show that Tri-Spin-Images (TriSI) has the best overall performance across all datasets. Unique Shape Context (USC), Rotational Projection Statistics (RoPS), 3D Shape Context (3DSC), and Signature of Histograms of OrienTations (SHOT) also achieved overall acceptable results.

Keywords

Feature Descriptor Shot Noise Neighboring Point Spin Image Image Boundary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

This research was supported in part by the National Natural Science Foundation of China under Grant 61471371, and in part by the Australian Research Council under Grants DE120102960 and DP110102166.

References

  1. 1.
    Mian, A., Bennamoun, M., Owens, R.: Three-dimensional model-based object recognition and segmentation in cluttered scenes. IEEE Trans. Pattern Anal. Mach. Intell. 28, 1584–1601 (2006)CrossRefGoogle Scholar
  2. 2.
    Guo, Y., Wan, J., Lu, M., Niu, W.: A parts-based method for articulated target recognition in laser radar data. Opt. Int. J. Light Electron. Opt. 124, 2727–2733 (2013)CrossRefGoogle Scholar
  3. 3.
    Bronstein, A., Bronstein, M., Guibas, L., Ovsjanikov, M.: Shape google: geometric words and expressions for invariant shape retrieval. ACM Trans. Graph. 30, 1–20 (2011)CrossRefGoogle Scholar
  4. 4.
    Guo, Y., Sohel, F., Bennamoun, M., Wan, J., Lu, M.: An accurate and robust range image registration algorithm for 3D object modeling. IEEE Trans. Multimedia 16, 1377–1390 (2014)CrossRefGoogle Scholar
  5. 5.
    Lei, Y., Bennamoun, M., Hayat, M., Guo, Y.: An efficient 3D face recognition approach using local geometrical signatures. Pattern Recogn. 47, 509–524 (2014)CrossRefGoogle Scholar
  6. 6.
    Bennamoun, M., Guo, Y., Sohel, F.: 2D and 3D feature selection for face recognition. Encyclopedia of Electrical and Electronics Engineering (2015, in press)Google Scholar
  7. 7.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27, 1615–1630 (2005)CrossRefGoogle Scholar
  8. 8.
    Guo, Y., Bennamoun, M., Sohel, F., Lu, M., Wan, J.: 3D object recognition in cluttered scenes with local surface features: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 36(11), 2270–2287 (2014)CrossRefGoogle Scholar
  9. 9.
    Tombari, F., Salti, S., Di Stefano, L.: Performance evaluation of 3D keypoint detectors. Int. J. Comput. Vis. 102, 198–220 (2013)CrossRefGoogle Scholar
  10. 10.
    Guo, Y., Sohel, F., Bennamoun, M., Lu, M., Wan, J.: Rotational projection statistics for 3D local surface description and object recognition. Int. J. Comput. Vis. 105, 63–86 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Bronstein, A., Bronstein, M., Bustos, B., et al.: SHREC 2010: robust feature detection and description benchmark. In: Eurographics Workshop on 3D Object Retrieval, vol. 2, p. 6 (2010)Google Scholar
  12. 12.
    Shah, S.A.A., Bennamoun, M., Boussaid, F., El-Sallam, A.: A novel local surface description for automatic 3D object recognition in low resolution cluttered scenes. In: IEEE International Conference on Computer Vision Workshops, pp. 638–643 (2013)Google Scholar
  13. 13.
    Schmid, C., Mohr, R., Bauckhage, C.: Evaluation of interest point detectors. Int. J. Comput. Vis. 37, 151–172 (2000)CrossRefzbMATHGoogle Scholar
  14. 14.
    Restrepo, M.I., Mundy, J.L.: An evaluation of local shape descriptors in probabilistic volumetric scenes. In: British Machine Vision Conference, pp. 1–11 (2012)Google Scholar
  15. 15.
    Guo, Y., Bennamoun, M., Sohel, F., Lu, M., Wan, J.: An integrated framework for 3D modeling, object detection and pose estimation from point-clouds. IEEE Trans. Instrum. Measur. 64(3), 683–693 (2015)CrossRefGoogle Scholar
  16. 16.
    Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Gool, L.: A comparison of affine region detectors. Int. J. Comput. Vis. 65, 43–72 (2005)CrossRefGoogle Scholar
  17. 17.
    Moreels, P., Perona, P.: Evaluation of features detectors and descriptors based on 3D objects. In: 10th IEEE International Conference on Computer Vision, vol. 1, pp. 800–807 (2005)Google Scholar
  18. 18.
    Moreels, P., Perona, P.: Evaluation of features detectors and descriptors based on 3D objects. Int. J. Comput. Vis. 73, 263–284 (2007)CrossRefGoogle Scholar
  19. 19.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. II–257 (2003)Google Scholar
  20. 20.
    Boyer, E., Bronstein, A., Bronstein, M., et al.: SHREC 2011: robust feature detection and description benchmark. In: Eurographics Workshop on Shape Retrieval, pp. 79–86 (2011)Google Scholar
  21. 21.
    Salti, S., Tombari, F., Stefano, L.: A performance evaluation of 3D keypoint detectors. In: International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission, pp. 236–243 (2011)Google Scholar
  22. 22.
    Alexandre, L.A.: 3D descriptors for object and category recognition: a comparative evaluation. In: Workshop on Color-Depth Camera Fusion in Robotics at the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2012)Google Scholar
  23. 23.
    Kim, H., Hilton, A.: Evaluation of 3D feature descriptors for multi-modal data registration. In: International Conference on 3D Vision, pp. 119–126 (2013)Google Scholar
  24. 24.
    Salti, S., Petrelli, A., Tombari, F., Di Stefano, L.: On the affinity between 3D detectors and descriptors. In: 2nd International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission (3DIMPVT), pp. 424–431 (2012)Google Scholar
  25. 25.
    Johnson, A.E., Hebert, M.: Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Trans. Pattern Anal. Mach. Intell. 21, 433–449 (1999)CrossRefGoogle Scholar
  26. 26.
    Frome, A., Huber, D., Kolluri, R., Bülow, T., Malik, J.: Recognizing objects in range data using regional point descriptors. In: Pajdla, T., Matas, J.G. (eds.) ECCV 2004. LNCS, vol. 3023, pp. 224–237. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  27. 27.
    Tombari, F., Salti, S., Di Stefano, L.: Unique shape context for 3D data description. In: ACM Workshop on 3D Object Retrieval, pp. 57–62 (2010)Google Scholar
  28. 28.
    Guo, Y., Bennamoun, M., Sohel, F., Wan, J., Lu, M.: 3D free form object recognition using rotational projection statistics. In: IEEE 14th Workshop on the Applications of Computer Vision, pp. 1–8 (2013)Google Scholar
  29. 29.
    Guo, Y., Sohel, F., Bennamoun, M., Wan, J., Lu, M.: A novel local surface feature for 3D object recognition under clutter and occlusion. Inf. Sci. 293(2), 196–213 (2015)CrossRefGoogle Scholar
  30. 30.
    Flint, A., Dick, A., Van den Hengel, A.: Local 3D structure recognition in range images. IET Comput. Vis. 2, 208–217 (2008)CrossRefGoogle Scholar
  31. 31.
    Rusu, R.B., Blodow, N., Marton, Z.C., Beetz, M.: Aligning point cloud views using persistent feature histograms. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3384–3391 (2008)Google Scholar
  32. 32.
    Rusu, R.B., Blodow, N., Beetz, M.: Fast point feature histograms (FPFH) for 3D registration. In: IEEE International Conference on Robotics and Automation, pp. 3212–3217 (2009)Google Scholar
  33. 33.
    Tombari, F., Salti, S., Di Stefano, L.: Unique signatures of histograms for local surface description. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part III. LNCS, vol. 6313, pp. 356–369. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  34. 34.
    Salti, S., Tombari, F., Stefano, L.D.: SHOT: unique signatures of histograms for surface and texture description. Comput. Vis. Image Underst. 125(8), 251–264 (2014)CrossRefGoogle Scholar
  35. 35.
    Taati, B., Greenspan, M.: Local shape descriptor selection for object recognition in range data. Comput. Vis. Image Underst. 115, 681–694 (2011)CrossRefGoogle Scholar
  36. 36.
    Lo, T., Siebert, J.: Local feature extraction and matching on range images: 2.5D SIFT. Comput. Vis. Image Underst. 113, 1235–1250 (2009)CrossRefGoogle Scholar
  37. 37.
    Bayramoglu, N., Alatan, A.: Shape index SIFT: range image recognition using local features. In: 20th International Conference on Pattern Recognition, pp. 352–355 (2010)Google Scholar
  38. 38.
    Bariya, P., Novatnack, J., Schwartz, G., Nishino, K.: 3D geometric scale variability in range images: features and descriptors. Int. J. Comput. Vis. 99, 232–255 (2012)CrossRefMathSciNetGoogle Scholar
  39. 39.
    Pottmann, H., Wallner, J., Huang, Q.X., Yang, Y.L.: Integral invariants for robust geometry processing. Comput. Aided Geom. Des. 26, 37–60 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  40. 40.
    Albarelli, A., Rodolà, E., Torsello, A.: Loosely distinctive features for robust surface alignment. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 519–532. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  41. 41.
    Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14, 239–256 (1992)CrossRefGoogle Scholar
  42. 42.
    Zaharescu, A., Boyer, E., Horaud, R.: Keypoints and local descriptors of scalar functions on 2D manifolds. Int. J. Comput. Vis. 100, 78–98 (2012)CrossRefzbMATHGoogle Scholar
  43. 43.
    Rusu, R.B., Cousins, S.: 3D is here: point cloud library (PCL). In: IEEE International Conference on Robotics and Automation, pp. 1–4 (2011)Google Scholar
  44. 44.
    Mian, A., Bennamoun, M., Owens, R.: On the repeatability and quality of keypoints for local feature-based 3D object retrieval from cluttered scenes. Int. J. Comput. Vis. 89, 348–361 (2010)CrossRefGoogle Scholar
  45. 45.
    Chen, X., Schmitt, F.: Intrinsic surface properties from surface triangulation. In: Sandini, G. (ed.) ECCV 1992. LNCS, vol. 588. Springer, Heidelberg (1992) Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Yulan Guo
    • 1
    • 2
    Email author
  • Mohammed Bennamoun
    • 2
  • Ferdous Sohel
    • 2
  • Min Lu
    • 1
  • Jianwei Wan
    • 1
  • Jun Zhang
    • 1
  1. 1.College of Electronic Science and EngineeringNational University of Defense TechnologyChangshaChina
  2. 2.School of Computer Science and Software EngineeringThe University of Western AustraliaCrawleyAustralia

Personalised recommendations