Skip to main content

A Semantic Region Growing Algorithm: Extraction of Urban Settings

Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)

Abstract

Recent years have witnessed a growing production of Volunteer Geographic Information (VGI). This led to the general availability of semantically rich datasets, allowing for novel ways to understand, analyze or generalize urban areas. This paper presents an approach that exploits this semantic richness to extract urban settings, i.e., conceptually-uniform geographic areas with respect to certain activities. We argue that urban settings are a more accurate way of generalizing cities, since it more closely models human sense-making of urban spaces. To this end, we formalized and implemented a semantic region growing algorithm—a modification of a standard image segmentation procedure. To evaluate our approach, shopping areas of two European capital cities (Vienna and London) were extracted from an OpenStreetMap dataset. Finally, we explored the use of our approach to search for urban settings (e.g., shopping areas) in one city, that are similar to a setting in another.

Keywords

  • Semantic region growing
  • Image segmentation
  • Urban settings
  • Place affordances

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-16787-9_2
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-16787-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Notes

  1. 1.

    http://www.openstreetmap.org.

  2. 2.

    http://metro.teczno.com/.

  3. 3.

    http://docs.geotools.org/.

  4. 4.

    http://www.openstreetmap.org/copyright.

  5. 5.

    http://leafletjs.com.

References

  • Abdalla, A., & Frank, A. U. (2012). Combining trip and task planning: How to get from a to passport. In Geographic information science (pp. 1–14). Berlin: Springer.

    Google Scholar 

  • Adams, R., & Bischof, L. (1994). Seeded region growing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(6), 641–647.

    CrossRef  Google Scholar 

  • Couclelis, H. (1992). Location, place, region, and space. Geography’s Inner Worlds, 2, 15–233.

    Google Scholar 

  • Couclelis, H., & Gale, N. (1986). Space and spaces. Geografiska Annaler. Series B. Human Geography (pp. 1–12).

    Google Scholar 

  • D’Antonio, F., Fogliaroni, P., & Kauppinen, T. (2014). VGI edit history reveals data trustworthiness and user reputation. In 17th AGILE International Conference on Geographic Information Science (Short Paper).

    Google Scholar 

  • Fan, J., Zeng, G., Body, M., & Hacid, M.-S. (2005). Seeded region growing: An extensive and comparative study. Pattern Recognition Letters, 26(8), 1139–1156.

    CrossRef  Google Scholar 

  • Fogliaroni, P. (2013). Qualitative spatial configuration queries: Towards next generation access methods for GIS. AKA, Akad: Verlag-Ges.

    Google Scholar 

  • Freundschuh, S. M., & Egenhofer, M. J. (1997). Human conceptions of spaces: Implications for GIS. Transactions in GIS, 2(4), 361–375.

    CrossRef  Google Scholar 

  • Goodchild, M. F. (2007). Citizens as sensors: The world of volunteered geography. GeoJournal, 69(4), 211–221.

    CrossRef  Google Scholar 

  • Humayun, M. I., & Schwering, A. (2012). Representing vague places: Determining a suitable method. In Proceedings of the International Workshop on Place-Related Knowledge Acquisition Research (P-KAR 2012), Monastery Seeon, Germany (Vol. 881, pp. 19–25). Citeseer.

    Google Scholar 

  • Jones, C. B., Alani, H., & Tudhope, D. (2001). Geographical information retrieval with ontologies of place. In Spatial information theory (pp. 322–335). Berlin: Springer.

    Google Scholar 

  • Jordan, T., Raubal, M., Gartrell, B., & Egenhofer, M. (1998). An affordance-based model of place in GIS. In 8th International Symposium on Spatial Data Handling, SDH (Vol. 98, pp. 98–109).

    Google Scholar 

  • Keßler, C., & de Groot, R. T. A. (2013). Trust as a proxy measure for the quality of volunteered geographic information in the case of OpenStreetMap. In Geographic information science at the heart of Europe (pp. 21–37). Berlin: Springer.

    Google Scholar 

  • Lynch, K. (1960). The image of the city (Vol. 11). Cambridge: MIT Press.

    Google Scholar 

  • Mark, D. M., & Frank, A. U. (1991). Cognitive and linguistic aspects of geographic space (Vol. 63). Berlin: Springer.

    Google Scholar 

  • Meegan, R., & Mitchell, A. (2001). It’s not community round here, it’s neighbourhood: Neighbourhood change and cohesion in urban regeneration policies. Urban Studies, 38(12), 2167–2194.

    CrossRef  Google Scholar 

  • Montello, D. R. (1993). Scale and multiple psychologies of space. In Spatial information theory a theoretical basis for GIS (pp. 312–321). Berlin: Springer.

    Google Scholar 

  • Montello, D. R., Goodchild, M. F., Gottsegen, J., & Fohl, P. (2003). Where’s downtown? Behavioral methods for determining referents of vague spatial queries. Spatial Cognition and Computation, 3(2–3), 185–204.

    CrossRef  Google Scholar 

  • Mooney, P., & Corcoran, P. (2012). The annotation process in OpenStreetMap. Transactions in GIS, 16(4), 561–579.

    CrossRef  Google Scholar 

  • Raubal, M. (2001). Human way finding in unfamiliar buildings: A simulation with a cognizing agent. Cognitive Processing, 2(3), 363–388.

    Google Scholar 

  • Richter, D., Vasardani, M., Stirlng, L., Richter, K.-F., & Winter, S. (2013). Zooming in–zooming out hierarchies in place descriptions. In Progress in location-based services (pp. 339–355). Berlin: Springer.

    Google Scholar 

  • Schatzki, T. R. (1991). Spatial ontology and explanation. Annals of the Association of American Geographers, 81(4), 650–670.

    CrossRef  Google Scholar 

  • Scheider, S., & Janowicz, K. (2014). Place reference systems: A constructive activity model of reference to places. Applied Ontology, 9(2), 97–127.

    Google Scholar 

  • Shimabukuro, Y. E., Batista, G. T., Mello, E. M. K., Moreira, J. C., & Duarte, V. (1998). Using shade fraction image segmentation to evaluate deforestation in landsat thematic mapper images of the amazon region. International Journal of Remote Sensing, 19(3), 535–541.

    CrossRef  Google Scholar 

  • Smith, B. (1995). On drawing lines on a map. In: Spatial information theory: A theoretical basis for GIS (pp. 475–484).

    Google Scholar 

  • Tuan, Y.-F. (1979). Space and place: Humanistic perspective (p. 1979). Berlin: Springer.

    Google Scholar 

  • Vasardani, M., Winter, S., & Richter, K.-F. (2013). Locating place names from place descriptions. International Journal of Geographical Information Science, 27(12), 2509–2532.

    CrossRef  Google Scholar 

  • Weiser, P., & Frank, A. U. (2013). Cognitive transactions: A communication model. In: T. Tenbrink, J. G. Stell, A. Galton, & Z. Wood (Eds.), COSIT (Vol. 8116, pp. 129–148). Lecture Notes in Computer Science. Berlin: Springer.

    Google Scholar 

  • Winter, S., Kuhn, W., & Krüger, A. (2009). Guest editorial: Does place have a place in geographic information science? Spatial Cognition & Computation: An Interdisciplinary Journal: Special Issue: Computational Models of Place, 9(3), 171−173.

    Google Scholar 

  • Winter, S., & Truelove, M. (2013). Talking about place where it matters. In Cognitive and linguistic aspects of geographic space (pp. 121–139). Berlin: Springer.

    Google Scholar 

  • Zielstra, D., & Zipf, A. (2010). A comparative study of proprietary geodata and volunteered geographic information for Germany. In 13th AGILE International Conference on Geographic Information Science.

    Google Scholar 

Download references

Acknowledgments

We acknowledge the work of © OpenStreetMap contributors,Footnote 4 and Leaflet.Footnote 5 This research was partially funded by the Vienna University of Technology through the Doctoral College Environmental Informatics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heidelinde Hobel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hobel, H., Abdalla, A., Fogliaroni, P., Frank, A.U. (2015). A Semantic Region Growing Algorithm: Extraction of Urban Settings. In: Bacao, F., Santos, M., Painho, M. (eds) AGILE 2015. Lecture Notes in Geoinformation and Cartography. Springer, Cham. https://doi.org/10.1007/978-3-319-16787-9_2

Download citation