Advertisement

AGILE 2015 pp 327-341 | Cite as

Drawing with Geography

  • Takeshi ShirabeEmail author
Chapter
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)

Abstract

A method is proposed to assist spatial planners in drawing with ‘geographic’ constraints. These constraints constrain graphic objects to have certain relationships that are not limited to be (Euclidean) geometric or topological but allowed to be dependent on the spatial variation of selected conditions (e.g., elevation and vegetation) characterizing an underlying geographic space. Just as in existing computer-aided design systems, the method accepts a manual change to a graphic object or constraint, and updates all affected graphic objects accordingly. The paper discusses how such a method is motivated and improves the graphic editing capability of geographic information systems, and identifies key issues for its implementation.

Keywords

Constraint-based drawing Geographic information systems Computer-aided design Geographic constraints Geodesign 

References

  1. Aerts, J. C. J. H., Eisinger, E., Heuvelink, G. B. M., & Stewart, T. J. (2003). Using linear integer programming for multi-site land-use allocation. Geographical Analysis, 35(2), 148–169.CrossRefGoogle Scholar
  2. Ahuja, R. K., Magnanti, T. L., & Orlin, J. B. (1993). Network flows: theory, algorithms, and applications. Englewood Cliffs, Upper Saddle River: Prentice Hall.Google Scholar
  3. Batty, J. M., & Densham, P. J. (1996). Decision support, GIS, and urban planning. Systemma Terra, 5(1), 72–76.Google Scholar
  4. Betting, B., & Hoffmann, C. (2011) Geometric constraint solving in parametric computer-aided design. Journal Computing Information Science Engineering, 11. doi: 10.1007/1.3593408.
  5. Bose, P., Maheshwari, A., Shu, C., & Wuhrer, S. (2011). A survey of geodesic paths on 3D surfaces. Computational Geometry: Theory and Applications, 44, 486–498.CrossRefGoogle Scholar
  6. Church, R. L., Gerrard, R. A., Gilpin, M., & Sine, P. (2003). Constructing cell-based habitat patches useful in conservation planning. Annals of the Association of American Geographers, 93(4), 814–827.CrossRefGoogle Scholar
  7. Cova, T. J., & Church, R. L. (2000). Contiguity constraints for single-region site search problems. Geographical Analysis, 32(4), 306–329.CrossRefGoogle Scholar
  8. Digital Landscape Architecture. (2009–2014). url:http://www.digital-la.de/.
  9. GeoDesign Summit. (2010–2014). url:http://www.geodesignsummit.com/.
  10. Gleicher, M., & Witkin, A. (1994). Drawing with constraints. The Visual Computer: International Journal of Computer Graphics, 11(1), 39–51.CrossRefGoogle Scholar
  11. Haverkort, H., Toma, L., & Zhuang, Y. (2009). Computing visibility on terrains in external memory. ACM Journal of Experimental Algorithmics, 13(5), 1–23.Google Scholar
  12. Jankowski, P. (1995). Integrating GIS and multiple criteria decision making methods. International Journal of Geographical Information Systems, 9(3), 252–273.CrossRefGoogle Scholar
  13. Jenson, S. K., & Domingue, J. O. (1988). Extracting topographic structure from digital elevation data for geographic information system analysis. Photogrammetric Engineering and Remote Sensing, 54(11), 1593–1600.Google Scholar
  14. Kondo, K. (1990). PIGMOD: parametric and interactive geometric modeller for mechanical design. Computer-Aided Design, 22(10), 633–644.CrossRefGoogle Scholar
  15. Ligmann-Zielinska, A., Church, R., & Jankowski, P. (2008). Spatial optimization as a generative technique for sustainable multiobjective land-use allocation. International Journal of Geographical Information Science, 22(6), 601–622.CrossRefGoogle Scholar
  16. McHarg, I. L. (1969). Design with nature. New York: American Museum of Natural History.Google Scholar
  17. Mitchell, J., & Papadimitriou, C. (1991). The weighted region problem: Finding shortest paths through a weighted planar subdivision. Journal of the ACM, 38(1), 18–73.CrossRefGoogle Scholar
  18. Nalle, D. J., Arthur, J. L., & Sessions, J. (2003). Designing compact and contiguous reserve networks with a hybrid heuristic algorithm. Forest Science, 48(1), 59–68.Google Scholar
  19. Owen, J. C. (1991). Algebraic solution for geometry from dimensional constraints (pp. 397–407). Austin: ACM Symposium on the Foundations of Solid Modeling.Google Scholar
  20. Önal, H., & Wang, Y. (2008). A graph theory approach for designing conservation reserve net-works with minimal fragmentation. Networks, 51(2), 142–152.CrossRefGoogle Scholar
  21. Shirabe, T. (2005). A model of contiguity for spatial unit allocation. Geographical Analysis, 37(1), 2–16.CrossRefGoogle Scholar
  22. Shirabe, T. (2008). Minimum work paths in elevated networks. Networks, 52(2), 88–97.CrossRefGoogle Scholar
  23. Shirabe, T. (2009). Map algebraic characterization of self-adapting neighborhoods. In: K. S. Hornsby, C. Claramunt, M. Denis & G. Ligozat (Eds.), Spatial Information Theory: Cognitive and Computational Foundations. Lecture Notes in Computer Science. In Proceedings of the Ninth International Conference on Spatial Information Theory: COSIT’09 (Vol. 5756, pp. 280–294). Berlin: Springer.Google Scholar
  24. Shirabe, T. (2011). A heuristic for the maximum value region problem in raster space. International Journal of Geographic Information Science, 25(7), 1097–1116.CrossRefGoogle Scholar
  25. Spatial concepts in GIS and design. (2008). url:http://ncgia.ucsb.edu/projects/scdg/.
  26. Tomlin, C. D. (1990). Geographic information systems and cartographic modeling. Englewood Cliffs: Prentice-Hall.Google Scholar
  27. Williams, J. C. (2002). A zero-one programming model for contiguous land acquisition. Geographical Analysis, 34(4), 330–349.CrossRefGoogle Scholar
  28. Woeginger, G. J. (1992). Computing maximum valued regions. Acta Cybern, 10(4), 303–315.Google Scholar
  29. Xiao, N. (2006). An evolutionary algorithm for site search problems. Geographical Analysis, 38(3), 227–247.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.School of Architecture and the Built EnvironmentKTH Royal Institute of TechnologyStockholmSweden

Personalised recommendations