Advertisement

AGILE 2015 pp 309-326 | Cite as

Designing a Language for Spatial Computing

  • Werner KuhnEmail author
  • Andrea Ballatore
Chapter
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)

Abstract

We present the design rationale underlying a language for spatial computing and sketch a prototypical implementation in Python. The goal of this work is to provide a high-level language for spatial computing that is executable on existing commercial and open source spatial computing platforms, particularly Geographic Information Systems (GIS). The key idea of the approach is to target an abstraction level higher than that of GIS commands and data formats, yet meaningful within and across application domains. The paper describes the underlying theory of spatial information and shows its evolving formal specification. An embedding in Python exemplifies access to commonly available implementations of spatial computations.

Keywords

Spatial computing Domain-specific language Core concepts 

Notes

Acknowledgments

We gratefully acknowledge contributions to the Python embedding and testing from Michel Zimmer, Marc Tim Thiemann, and Eric Ahlgren as well as funding from the UCSB Center for Spatial Studies.

References

  1. Albrecht, J. (1998). Universal analytical GIS operations: A task-oriented systematization of data structure-independent GIS functionality. In H. Onsrud & M. Craglia (Eds.), Geographic information research: Transatlantic perspectives (pp. 577–591). London: Taylor & Francis.Google Scholar
  2. Baumann, P. (2010). The OGC web coverage processing service (WCPS) standard. Geoinformatica, 14(4), 447–479.CrossRefGoogle Scholar
  3. Burrough, P. A., & Frank, A. U. (1996). Geographic objects with indeterminate boundaries. London: Taylor & Francis.Google Scholar
  4. Burrough, P. A., & McDonnell, R. (1998). Principles of geographical information systems. Oxford, UK: Oxford University Press.Google Scholar
  5. Camara, G., Egenhofer, M. J., Ferreira, K., Andrade, P., Queiroz, G., Sanchez, A., et al. (2014). Fields as a generic data type for big spatial data. In Geographic Information Science (pp. 159–172). Berlin: Springer.Google Scholar
  6. Couclelis, H. (1992). People manipulate objects (but cultivate fields): Beyond the raster-vector debate in GIS. In A. U. Frank, I. Campari, & U. Formentini (Eds.), Theories and methods of spatio-temporal reasoning in geographic space (pp. 65–77). Berlin: Springer.CrossRefGoogle Scholar
  7. Degbelo, A., & Kuhn, W. (2012). A Conceptual Analysis of Resolution. In GeoInfo—XIII Brazilian Symposium on GeoInformatics, November 25–28 2012, Campos do Jordão, Brasil (pp. 11–22).Google Scholar
  8. Donnelly, M. (2005). Relative Places. Applied Ontology, 1, 55–75.Google Scholar
  9. Egenhofer, M. J., & Kuhn, W. (1999). Interacting with Geographic Information Systems. In M. F. Goodchild, D. J. Maguire, D. W. Rhind, & P. Longley (Eds.), Geographical Information Systems: Principles, techniques, applications, and management (2nd ed., Vol. 1, pp. 401–412). New York: Wiley.Google Scholar
  10. Galton, A. (2004). Fields and objects in space, time, and space-time. Spatial Cognition & Computation, 4(1), 39–68.CrossRefGoogle Scholar
  11. Ghosh, D. (2011). DSL for the uninitiated. Communications of the ACM, 54(7), 44.CrossRefGoogle Scholar
  12. Golledge, R. G. (1995). Primitives of spatial knowledge. In T. L. Nyerges, D. M. Mark, R. Laurini, & M. J. Egenhofer (Eds.), Cognitive aspects of human-computer interaction for geographic information systems (pp. 29–44). Berlin: Springer.Google Scholar
  13. Goodchild, M. F., Yuan, M., & Cova, T. J. (2007). Towards a general theory of geographic representation in GIS. International Journal of Geographical Information Science, 21(3), 239–260.CrossRefGoogle Scholar
  14. Janelle, D. G., & Goodchild, M. F. (2011). Concepts, principles, tools, and challenges in spatially integrated social science. SAGE Publications: In the SAGE Handbook of GIS and Society.CrossRefGoogle Scholar
  15. Kuhn, W. (2012). Core concepts of spatial information for transdisciplinary research. International Journal of Geographical Information Science, 26(12), 2267–2276 (Special Issue in honor of Michael Goodchild).Google Scholar
  16. Newman, M. E. J. (2010). Networks. Oxford: Oxford University Press.Google Scholar
  17. Norman, D. A. (1986). Cognitive Engineering. In D. Norman & S. Draper (Eds.), User centered system design (pp. 31–61). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  18. Rosenfeld, A. (1986). “Continuous” functions on digital pictures. Pattern Recognition Letters, 4(3), 177–184.CrossRefGoogle Scholar
  19. Talmy, L. (1983). How language structures space. In H. L. Pick & L. P. Acredolo (Eds.), Spatial Orientation (pp. 225–282). New York/London: Plenum Press.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Center for Spatial Studies, Department of GeographyUniversity of CaliforniaSanta BarbaraUSA
  2. 2.Center for Spatial StudiesUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations