Skip to main content

Neuronal Signatures of Pain in the Rehabilitation Patient

  • Chapter
  • First Online:
Comprehensive Pain Management in the Rehabilitation Patient

Abstract

Emerging evidence suggests chronic pain is a neurological disease that requires a unique set of diagnostic and therapeutic protocols. While much emphasis has been placed on therapy, advances in diagnostic methods have received comparatively little attention. This chapter discusses the structural and functional changes in the brain associated with chronic pain, arguing such changes constitute neuronal signatures that could potentially lead to objective diagnostics, while respecting the subjective pain report by the patient. This chapter reviews morphometric, functional neuroimaging and electrophysiological data that correlate with the presence, severity, and duration of chronic pain, while highlighting quantitative data analysis methods such as frequency domains analysis of EEG and machine learning. Limitations and future directions leading to the development of objective diagnostics for pain are also discussed.

“To have pain is to have certainty; to hear about pain is to have doubt.”

Elaine Scarry, in The Body in Pain

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Loeser JD. Pain: disease or dis-ease? The John Bonica Lecture: presented at the third World Congress of World Institute of Pain, Barcelona 2004. Pain Pract. 2005;5(2):77–84.

    PubMed  Google Scholar 

  2. Cohen M, Quintner J, Buchanan D. Is chronic pain a disease? Pain Med. 2013;14(9):1284–8.

    PubMed  Google Scholar 

  3. Quality improvement guidelines for the treatment of acute pain and cancer pain. American Pain Society Quality of Care Committee. JAMA. 1995;274(23):1874–80.

    Google Scholar 

  4. Mularski RA, White-Chu F, Overbay D. Measuring pain as the 5th vital sign does not improve quality of pain management. J Gen Intern Med. 2006;21(6):607–12.

    PubMed  PubMed Central  Google Scholar 

  5. Ashburner J, Friston KJ. Voxel-based morphometry—the methods. Neuroimage. 2000;11(6 Pt 1):805–21.

    CAS  PubMed  Google Scholar 

  6. Ashburner J, Friston KJ. Why voxel-based morphometry should be used. Neuroimage. 2001;14(6):1238–43.

    CAS  PubMed  Google Scholar 

  7. Apkarian AV, Sosa Y, Sonty S, Levy RM. Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J Neurosci. 2004;24(46):10410–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Schmidt-Wilcke T, Leinisch E, Gänssbauer S. Affective components and intensity of pain correlate with structural differences in gray matter in chronic back pain patients. Pain. 2006;125(1–2):89–97.

    CAS  PubMed  Google Scholar 

  9. Kim JH, Suh SI, Seol HY, Oh K, Seo WK, Yu SW. Regional grey matter changes in patients with migraine: a voxel-based morphometry study. Cephalalgia. 2008;28(6):598–604.

    CAS  PubMed  Google Scholar 

  10. Valfrè W, Rainero I, Bergui M, Pinessi L. Voxel-based morphometry reveals gray matter abnormalities in migraine. Headache. 2008;48(1):109–17.

    PubMed  Google Scholar 

  11. Schmidt-Wilcke T, Leinisch E, Straube A, Kämpfe N. Gray matter decrease in patients with chronic tension type headache. Neurology. 2005;5(9):1483–6.

    Google Scholar 

  12. Obermann M, Nebel K, Schumann C, Holle D. Gray matter changes related to chronic posttraumatic headache. Neurology. 2009;73(12):978–83.

    PubMed  Google Scholar 

  13. Schweinhardt P, Kuchinad A, Pukall CF, Bushnell MC. Increased gray matter density in young women with chronic vulvar pain. Pain. 2008;140(3):411–9.

    CAS  PubMed  Google Scholar 

  14. Geha PY, Baliki MN, Harden RN, Bauer WR, Parrish TB. The brain in chronic CRPS pain: abnormal gray-white matter interactions in emotional and autonomic regions. Neuron. 2008;60(4):570–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kuchinad A, Schweinhardt P. Accelerated brain gray matter loss in fibromyalgia patients: premature aging of the brain? J Neurosci. 2007;27(15):4004–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Schmidt-Wilcke T, Luerding R, Weigand T, Jürgens T. Striatal grey matter increase in patients suffering from fibromyalgia—a voxel-based morphometry study. Pain. 2007;132(Suppl 1):S109–16.

    PubMed  Google Scholar 

  17. May A. Chronic pain may change the structure of the brain. Pain. 2008;137(1):7–15.

    PubMed  Google Scholar 

  18. Tracey I, Bushnell MC. How neuroimaging studies have challenged us to rethink: is chronic pain a disease? J Pain. 2009;10(11):1113–20.

    PubMed  Google Scholar 

  19. Melzack R. From the gate to the neuromatrix. Pain. 1999;(Suppl 6):S121–6.

    Google Scholar 

  20. Saab CY. Pain-related changes in the brain: diagnostic and therapeutic potentials. Trends Neurosci. 2012;35(10):629–37.

    CAS  PubMed  Google Scholar 

  21. Hsieh JC, Belfrage M, Stone-Elander S, Hansson P. Central representation of chronic ongoing neuropathic pain studied by positron emission tomography. Pain. 1995;63(2):225–36.

    PubMed  Google Scholar 

  22. Fukumoto M, Ushida T, Zinchuk VS, Yamamoto H, Yoshida S. Contralateral thalamic perfusion in patients with reflex sympathetic dystrophy syndrome. Lancet. 1999;354(9192):1790–1.

    CAS  PubMed  Google Scholar 

  23. Fingelkurts AA, Fingelkurts AA, Kahkonen S. Functional connectivity in the brain—is it an elusive concept? Neurosci Biobehav Rev. 2005;28(8):827–36.

    PubMed  Google Scholar 

  24. Tracey I. Functional connectivity and pain: how effectively connected is your brain? Pain. 2005;116(3):173–4.

    PubMed  Google Scholar 

  25. Ploner M, Lee MC, Wiech K, Bingel U, Tracey I. Prestimulus functional connectivity determines pain perception in humans. Proc Natl Acad Sci U S A. 2010;107(1):355–60.

    CAS  PubMed  Google Scholar 

  26. Longo MR, Iannetti GD, Mancini F, Driver J, Haggard P. Linking pain and the body: neural correlates of visually induced analgesia. J Neurosci. 2012;32(8):2601–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Wiech K, Lin CS, Brodersen KH, Bingel U, Ploner M, Tracey I. Anterior insula integrates information about salience into perceptual decisions about pain. J Neurosci. 2010;30(48):16324–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Prato M, Favilla S, Zanni L, Porro CA, Baraldi P. A regularization algorithm for decoding perceptual temporal profiles from fMRI data. Neuroimage. 2011;56(1):258–67.

    PubMed  Google Scholar 

  29. Brown JE, Chatterjee N, Younger J, Mackey S. Towards a physiology-based measure of pain: patterns of human brain activity distinguish painful from non-painful thermal stimulation. PLoS One. 2011;6(9):e24124.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Telenczuk B, Baker SN, Herz AV, Curio G. High-frequency EEG covaries with spike burst patterns detected in cortical neurons. J Neurophysiol. 2011;105(6):2951–9.

    PubMed  PubMed Central  Google Scholar 

  31. Sarnthein J, Stern J, Aufenberg C, Rousson V. Increased EEG power and slowed dominant frequency in patients with neurogenic pain. Brain. 2006;129(Pt 1):55–64.

    PubMed  Google Scholar 

  32. Stern J, Jeanmonod D, Sarnthein J. Persistent EEG overactivation in the cortical pain matrix of neurogenic pain patients. Neuroimage. 2006;31(2):721–31.

    PubMed  Google Scholar 

  33. Olesen SS, Hansen TM, Graversen C. Slowed EEG rhythmicity in patients with chronic pancreatitis: evidence of abnormal cerebral pain processing? Eur J Gastroenterol Hepatol. 2011;23(5):418–24.

    CAS  PubMed  Google Scholar 

  34. Graversen C, Olesen SS, Olesen AE. The analgesic effect of pregabalin in patients with chronic pain is reflected by changes in pharmaco-EEG spectral indices. Br J Clin Pharmacol. 2012;73(3):363–72.

    CAS  PubMed  Google Scholar 

  35. Schulman JJ, Ramirez R. Thalamocortical dysrhythmia syndrome: MEG imaging of neuropathic pain. Thalamus Relat Syst. 2005;3(1):33–9.

    Google Scholar 

  36. Walton KD, Dubois M, Llinas RR. Abnormal thalamocortical activity in patients with Complex Regional Pain Syndrome (CRPS) type I. Pain. 2010;150(1):41–51.

    CAS  PubMed  Google Scholar 

  37. Walton KD, Llinás RR, editors. Central pain as a thalamocortical dysrhythmia. In: Translational pain research: from mouse to man (Chapter 13). Boca Raton: CRC Press/Taylor & Francis;2010.

    Google Scholar 

  38. Flor H, Braun C, Elbert T, Birbaumer N. Extensive reorganization of primary somatosensory cortex in chronic back pain patients. Neurosci Lett. 1997;224(1):5–8.

    CAS  PubMed  Google Scholar 

  39. Vartiainen N, Kirveskari E, Kallio-Laine K, Kalso E. Cortical reorganization in primary somatosensory cortex in patients with unilateral chronic pain. J Pain. 2009;10(8):854–9.

    PubMed  Google Scholar 

  40. Maihöfner C, Handwerker HO, Neundörfer B, Birklein F. Patterns of cortical reorganization in complex regional pain syndrome. Neurology. 2003;61(12):1707–15.

    PubMed  Google Scholar 

  41. Maihöfner C, Handwerker HO, Neundörfer B, Birklein F. Cortical reorganization during recovery from complex regional pain syndrome. Neurology. 2004;63(4):693–701.

    PubMed  Google Scholar 

  42. Hains BC, Saab CY. Alterations in burst firing of thalamic VPL neurons and reversal by Nav1.3 antisense after spinal cord injury. J Neurophysiol. 2006;95(6):3343–52.

    CAS  PubMed  Google Scholar 

  43. Iwata M, LeBlanc BW, Kadasi LM, Zerah ML, Cosgrove RG, Saab CY. High-frequency stimulation in the ventral posterolateral thalamus reverses electrophysiologic changes and hyperalgesia in a rat model of peripheral neuropathic pain. Pain. 2011;152(11):2505–13.

    PubMed  Google Scholar 

  44. LeBlanc BW, Lii TR, Huang JJ, Chao YC, Bowary PM, Cross BS, Lee MS, Vera-Portocarrero LP, Saab CY. T-type calcium channel blocker Z944 restores cortical synchrony and thalamocortical connectivity in a rat model of neuropathic pain. Pain. 2016;157(1):255–63.

    CAS  PubMed  Google Scholar 

  45. Leblanc BW, Lii TR, Silverman AE, Alleyne RT, Saab CY. Cortical theta is increased while thalamocortical coherence is decreased in rat models of acute and chronic pain. Pain. 2014;155(4):773–82.

    PubMed  Google Scholar 

  46. Llinás R, Ribary U, Jeanmonod D. Thalamocortical dysrhythmia I. Functional and imaging aspects. Thalamus Relat Syst. 2001;1(3):237–44.

    Google Scholar 

  47. Woo CW, Wager TD. Neuroimaging-based biomarker discovery and validation. Pain. 2015;156(8):1379–81.

    PubMed  PubMed Central  Google Scholar 

  48. Marquand A, Howard M, Brammer M, Chu C, Coen S. Quantitative prediction of subjective pain intensity from whole-brain fMRI data using Gaussian processes. Neuroimage. 2010;49(3):2178–89.

    PubMed  Google Scholar 

  49. Ung H, Brown JE, Johnson KA, Younger J. Multivariate classification of structural MRI data detects chronic low back pain. Cereb Cortex. 2012;24(4):1037–44.

    PubMed  PubMed Central  Google Scholar 

  50. Gram M, Graversen C, Olesen AE. Machine learning on encephalographic activity may predict opioid analgesia. Eur J Pain. 2015;19(10):1552–61.

    CAS  PubMed  Google Scholar 

  51. Hsu MC, Harris RE, Sundgren PC, Welsh RC. No consistent difference in gray matter volume between individuals with fibromyalgia and age-matched healthy subjects when controlling for affective disorder. Pain. 2009;143(3):262–7.

    PubMed  PubMed Central  Google Scholar 

  52. Erickson KI, Raji CA, Lopez OL, Becker JT, Rosano C, Newman AB, Gach HM, Thompson PM, Ho AJ, Kuller LH. Physical activity predicts gray matter volume in late adulthood: the Cardiovascular Health Study. Neurology. 2010;75(16):1415–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Younger JW, Chu LF, D’Arcy NT, Trott KE, Jastrzab LE. Prescription opioid analgesics rapidly change the human brain. Pain. 2011;152(8):1803–10.

    CAS  PubMed  PubMed Central  Google Scholar 

Recommended Reading

  • Apkarian AV, Baliki MN, Geha PY. Towards a theory of chronic pain. Prog Neurobiol. 2009;87(2):81–97.

    PubMed  Google Scholar 

  • Martucci KT, Ng P, Mackey S. Neuroimaging chronic pain: what have we learned and where are we going? Future Neurol. 2014;9(6):615–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rosa MJ, Seymour B. Decoding the matrix: benefits and limitations of applying machine learning algorithms to pain neuroimaging. Pain. 2014;155(5):864–7.

    PubMed  Google Scholar 

  • Saab CY. Chronic pain and brain abnormalities. 1st ed. London: Elsevier Academic Press; 2013.

    Google Scholar 

Download references

Acknowledgment

C.S. was funded by investigator-initiated grants from Asahi Kasei Pharma Corp. and Boston Scientific. Authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl Y. Saab M.S., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lii, T.R., Saab, C.Y. (2017). Neuronal Signatures of Pain in the Rehabilitation Patient. In: Carayannopoulos DO, MPH, A. (eds) Comprehensive Pain Management in the Rehabilitation Patient. Springer, Cham. https://doi.org/10.1007/978-3-319-16784-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16784-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16783-1

  • Online ISBN: 978-3-319-16784-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics