Skip to main content

Orchestrated Role of microRNAs in Skin Development and Regeneration

Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)

Abstract

MicroRNA (miRNA)-dependent control of gene expression is one of the important components of epigenetics that plays a fundamental role in the balancing and fine-tuning of lineage-specific differentiation programs in many organs including skin. Skin development is governed by bi-directional interactions between the epithelium and mesenchyme. During skin embryogenesis, multi-potent progenitors within the single-layered surface epithelium differentiate to form the multi-layered epidermis and its appendages, including the hair follicle. Skin and hair follicle development is tightly regulated by a balance of gene activation and silencing. miRNAs play indispensable roles in the formation of functional skin and its appendages, by orchestrating gene expression programs in a spatiotemporally specific manner, and also play important roles in a variety of skin diseases miRNAs. Study of the non-coding genome not only advances our understanding of the fundamental biological roles of miRNAs in healthy organisms, but will further allow for the development of novel therapeutic modalities involving targeting non-coding RNAs for many diseases including skin pathologies.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-16769-5_7
  • Chapter length: 22 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-16769-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 7.1

References

  1. Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014;15(8):509–24.

    CrossRef  PubMed  CAS  Google Scholar 

  2. Chang TC, Pertea M, Lee S, Salzberg SL, Mendell JT. Genome-wide annotation of microRNA primary transcript structures reveals novel regulatory mechanisms. Genome Res. 2015;25(9):1401–9.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  3. Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell. 2007;129(7):1401–14.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  4. Wang D, Zhang Z, O’Loughlin E, Wang L, Fan X, Lai EC, et al. MicroRNA-205 controls neonatal expansion of skin stem cells by modulating the PI(3)K pathway. Nat Cell Biol. 2013;15(10):1153–63.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  5. Adam RC, Yang H, Rockowitz S, Larsen SB, Nikolova M, Oristian DS, et al. Pioneer factors govern super-enhancer dynamics in stem cell plasticity and lineage choice. Nature. 2015;521(7552):366–70.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  6. Marson A, Levine SS, Cole MF, Frampton GM, Brambrink T, Johnstone S, et al. Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell. 2008;134(3):521–33.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  7. Suzuki HI, Yamagata K, Sugimoto K, Iwamoto T, Kato S, Miyazono K. Modulation of microRNA processing by p53. Nature. 2009;460(7254):529–33.

    CrossRef  PubMed  CAS  Google Scholar 

  8. Davis BN, Hilyard AC, Lagna G, Hata A. SMAD proteins control DROSHA-mediated microRNA maturation. Nature. 2008;454(7200):56–61.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  9. Kawai S, Amano A. BRCA1 regulates microRNA biogenesis via the DROSHA microprocessor complex. J Cell Biol. 2012;197(2):201–8.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  10. Krell J, Stebbing J, Frampton AE, Carissimi C, Harding V, De Giorgio A, et al. The role of TP53 in miRNA loading onto AGO2 and in remodelling the miRNA-mRNA interaction network. Lancet. 2015;385 Suppl 1:S15.

    CrossRef  PubMed  Google Scholar 

  11. Mori M, Triboulet R, Mohseni M, Schlegelmilch K, Shrestha K, Camargo FD, et al. Hippo signaling regulates microprocessor and links cell-density-dependent miRNA biogenesis to cancer. Cell. 2014;156(5):893–906.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  12. Alarcon CR, Lee H, Goodarzi H, Halberg N, Tavazoie SF. N6-methyladenosine marks primary microRNAs for processing. Nature. 2015;519(7544):482–5.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  13. Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U. Nuclear export of microRNA precursors. Science. 2004;303(5654):95–8.

    CrossRef  PubMed  CAS  Google Scholar 

  14. Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 2003;17(24):3011–6.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  15. Yi R, Doehle BP, Qin Y, Macara IG, Cullen BR. Overexpression of exportin 5 enhances RNA interference mediated by short hairpin RNAs and microRNAs. RNA. 2005;11(2):220–6.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  16. Xie M, Li M, Vilborg A, Lee N, Shu MD, Yartseva V, et al. Mammalian 5′-capped microRNA precursors that generate a single microRNA. Cell. 2013;155(7):1568–80.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  17. Andl T, Murchison EP, Liu F, Zhang Y, Yunta-Gonzalez M, Tobias JW, et al. The miRNA-processing enzyme dicer is essential for the morphogenesis and maintenance of hair follicles. Current Biol CB. 2006;16(10):1041–9.

    CrossRef  CAS  Google Scholar 

  18. Teta M, Choi YS, Okegbe T, Wong G, Tam OH, Chong MM, et al. Inducible deletion of epidermal Dicer and Drosha reveals multiple functions for miRNAs in postnatal skin. Development. 2012;139(8):1405–16.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  19. Wang D, Zhang Z, O’Loughlin E, Lee T, Houel S, O’Carroll D, et al. Quantitative functions of Argonaute proteins in mammalian development. Genes Dev. 2012;26(7):693–704.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  20. Yi R, O’Carroll D, Pasolli HA, Zhang Z, Dietrich FS, Tarakhovsky A, et al. Morphogenesis in skin is governed by discrete sets of differentially expressed microRNAs. Nat Genet. 2006;38(3):356–62.

    CrossRef  PubMed  CAS  Google Scholar 

  21. Yi R, Pasolli HA, Landthaler M, Hafner M, Ojo T, Sheridan R, et al. DGCR8-dependent microRNA biogenesis is essential for skin development. Proc Natl Acad Sci U S A. 2009;106(2):498–502.

    CrossRef  PubMed  Google Scholar 

  22. Czech B, Hannon GJ. Small RNA sorting: matchmaking for Argonautes. Nat Rev Genet. 2011;12(1):19–31.

    CrossRef  PubMed  CAS  Google Scholar 

  23. Jonas S, Izaurralde E. Towards a molecular understanding of microRNA-mediated gene silencing. Nat Rev Genet. 2015;16(7):421–33.

    CrossRef  PubMed  CAS  Google Scholar 

  24. Rybak-Wolf A, Jens M, Murakawa Y, Herzog M, Landthaler M, Rajewsky N. A variety of dicer substrates in human and C. elegans. Cell. 2014;159(5):1153–67.

    CrossRef  PubMed  CAS  Google Scholar 

  25. Smibert P, Yang JS, Azzam G, Liu JL, Lai EC. Homeostatic control of Argonaute stability by microRNA availability. Nat Struct Mol Biol. 2013;20(7):789–95.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  26. Calabrese JM, Seila AC, Yeo GW, Sharp PA. RNA sequence analysis defines Dicer’s role in mouse embryonic stem cells. Proc Natl Acad Sci U S A. 2007;104(46):18097–102.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  27. Yoon JH, Jo MH, White EJ, De S, Hafner M, Zucconi BE, et al. AUF1 promotes let-7b loading on Argonaute 2. Genes Dev. 2015;29(15):1599–604.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  28. Golden RJ, Chen B, Li T, Braun J, Manjunath H, Chen X, et al. An Argonaute phosphorylation cycle promotes microRNA-mediated silencing. Nature. 2017;542(7640):197–202.

    Google Scholar 

  29. La Rocca G, Olejniczak SH, Gonzalez AJ, Briskin D, Vidigal JA, Spraggon L, et al. In vivo, Argonaute-bound microRNAs exist predominantly in a reservoir of low molecular weight complexes not associated with mRNA. Proc Natl Acad Sci U S A. 2015;112(3):767–72.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  30. Rissland OS, Hong SJ, Bartel DP. MicroRNA destabilization enables dynamic regulation of the miR-16 family in response to cell-cycle changes. Mol Cell. 2011;43(6):993–1004.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  31. Burroughs AM, Ando Y, de Hoon MJ, Tomaru Y, Nishibu T, Ukekawa R, et al. A comprehensive survey of 3′ animal miRNA modification events and a possible role for 3′ adenylation in modulating miRNA targeting effectiveness. Genome Res. 2010;20(10):1398–410.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  32. Jones MR, Blahna MT, Kozlowski E, Matsuura KY, Ferrari JD, Morris SA, et al. Zcchc11 uridylates mature miRNAs to enhance neonatal IGF-1 expression, growth, and survival. PLoS Genet. 2012;8(11):e1003105.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  33. Jones MR, Quinton LJ, Blahna MT, Neilson JR, Fu S, Ivanov AR, et al. Zcchc11-dependent uridylation of microRNA directs cytokine expression. Nat Cell Biol. 2009;11(9):1157–63.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  34. White AC, Khuu JK, Dang CY, Hu J, Tran KV, Liu A, et al. Stem cell quiescence acts as a tumour suppressor in squamous tumours. Nat Cell Biol. 2014;16(1):99–107.

    CrossRef  PubMed  CAS  Google Scholar 

  35. Riemondy K, Wang XJ, Torchia EC, Roop DR, Yi R. MicroRNA-203 represses selection and expansion of oncogenic Hras transformed tumor initiating cells. eLife 2015;4:e07004. https://doi.org/10.7554/eLife.07004

  36. Levy C, Khaled M, Robinson KC, Veguilla RA, Chen PH, Yokoyama S, et al. Lineage-specific transcriptional regulation of DICER by MITF in melanocytes. Cell. 2010;141(6):994–1005.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  37. Ito M, Liu Y, Yang Z, Nguyen J, Liang F, Morris RJ, et al. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat Med. 2005;11(12):1351–4.

    CrossRef  PubMed  CAS  Google Scholar 

  38. Beck B, Blanpain C. Mechanisms regulating epidermal stem cells. EMBO J. 2012;31(9):2067–75.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  39. Yi R, Poy MN, Stoffel M, Fuchs E. A skin microRNA promotes differentiation by repressing ‘stemness’. Nature. 2008;452(7184):225–9.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  40. Zhang L, Stokes N, Polak L, Fuchs E. Specific microRNAs are preferentially expressed by skin stem cells to balance self-renewal and early lineage commitment. Cell Stem Cell. 2011;8(3):294–308.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  41. Ahmed MI, Alam M, Emelianov VU, Poterlowicz K, Patel A, Sharov AA, et al. MicroRNA-214 controls skin and hair follicle development by modulating the activity of the Wnt pathway. J Cell Biol. 2014;207(4):549–67.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  42. Mardaryev AN, Ahmed MI, Vlahov NV, Fessing MY, Gill JH, Sharov AA, et al. Micro-RNA-31 controls hair cycle-associated changes in gene expression programs of the skin and hair follicle. FASEB J Off Publ Fed Am Soc Exp Biol. 2010;24(10):3869–81.

    CAS  Google Scholar 

  43. Lena AM, Shalom-Feuerstein R, Rivetti di Val Cervo P, Aberdam D, Knight RA, Melino G, et al. miR-203 represses ‘stemness’ by repressing DeltaNp63. Cell Death Differ. 2008;15(7):1187–95.

    CrossRef  PubMed  CAS  Google Scholar 

  44. Peng H, Park JK, Katsnelson J, Kaplan N, Yang W, Getsios S, et al. microRNA-103/107 family regulates multiple epithelial stem cell characteristics. Stem Cells. 2015;33(5):1642–56.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  45. Eichhorn SW, Guo H, McGeary SE, Rodriguez-Mias RA, Shin C, Baek D, et al. mRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues. Mol Cell. 2014;56(1):104–15.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  46. Chi SW, Zang JB, Mele A, Darnell RB. Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature. 2009;460(7254):479–86.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  47. Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 2010;141(1):129–41.

    Google Scholar 

  48. Mills AA, Zheng B, Wang XJ, Vogel H, Roop DR, Bradley A. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature. 1999;398(6729):708–13.

    CrossRef  PubMed  CAS  Google Scholar 

  49. Truong AB, Kretz M, Ridky TW, Kimmel R, Khavari PA. p63 regulates proliferation and differentiation of developmentally mature keratinocytes. Genes Dev. 2006;20(22):3185–97.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  50. Yuan S, Li F, Meng Q, Zhao Y, Chen L, Zhang H, et al. Post-transcriptional regulation of keratinocyte progenitor cell expansion, differentiation and hair follicle regression by miR-22. PLoS Genet. 2015;11(5):e1005253.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  51. Jackson SJ, Zhang Z, Feng D, Flagg M, O’Loughlin E, Wang D, et al. Rapid and widespread suppression of self-renewal by microRNA-203 during epidermal differentiation. Development. 2013;140(9):1882–91.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  52. Chen HL, Chiang PC, Lo CH, Lo YH, Hsu DK, Chen HY, et al. Galectin-7 regulates keratinocyte proliferation and differentiation through JNK-miR-203-p63 signaling. J Invest Dermatol. 2016;136(1):182–91.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  53. Chikh A, Matin RN, Senatore V, Hufbauer M, Lavery D, Raimondi C, et al. iASPP/p63 autoregulatory feedback loop is required for the homeostasis of stratified epithelia. EMBO J. 2011;30(20):4261–73.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  54. Kim KH, Cho EG, Yu SJ, Kang H, Kim YJ, Kim SH, et al. DeltaNp63 intronic miR-944 is implicated in the DeltaNp63-mediated induction of epidermal differentiation. Nucleic Acids Res. 2015;43(15):7462–79.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  55. Antonini D, Russo MT, De Rosa L, Gorrese M, Del Vecchio L, Missero C. Transcriptional repression of miR-34 family contributes to p63-mediated cell cycle progression in epidermal cells. J Invest Dermatol. 2010;130(5):1249–57.

    CrossRef  PubMed  CAS  Google Scholar 

  56. Amelio I, Lena AM, Viticchie G, Shalom-Feuerstein R, Terrinoni A, Dinsdale D, et al. miR-24 triggers epidermal differentiation by controlling actin adhesion and cell migration. J Cell Biol. 2012;199(2):347–63.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  57. Peng H, Kaplan N, Hamanaka RB, Katsnelson J, Blatt H. Yang W, et al. microRNA-31/factor-inhibiting hypoxia-inducible factor 1 nexus regulates keratinocyte differentiation. Proc Natl Acad Sci U S A. 2012;109(35):14030–4.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  58. Blanpain C, Fuchs E. Epidermal homeostasis: a balancing act of stem cells in the skin. Nature reviews Molecular cell biology. 2009;10(3):207–17.

    Google Scholar 

  59. Millar SE. Molecular mechanisms regulating hair follicle development. The Journal of investigative dermatology. 2002;118(2):216–25.

    Google Scholar 

  60. Schmidt-Ullrich R, Paus R. Molecular principles of hair follicle induction and morphogenesis. Bioessays. 2005;27(3):247–61.

    Google Scholar 

  61. Andl T, Reddy ST, Gaddapara T, Millar SE. WNT signals are required for the initiation of hair follicle development. Dev Cell. 2002;2(5):643–53.

    CrossRef  PubMed  CAS  Google Scholar 

  62. Choi YS, Zhang Y, Xu M, Yang Y, Ito M, Peng T, et al. Distinct functions for Wnt/beta-catenin in hair follicle stem cell proliferation and survival and interfollicular epidermal homeostasis. Cell Stem Cell. 2013;13(6):720–33.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  63. Fu J, Hsu W. Epidermal Wnt controls hair follicle induction by orchestrating dynamic signaling crosstalk between the epidermis and dermis. J Invest Dermatol. 2013;133(4):890–8.

    CrossRef  PubMed  CAS  Google Scholar 

  64. Sick S, Reinker S, Timmer J, Schlake T. WNT and DKK determine hair follicle spacing through a reaction-diffusion mechanism. Science. 2006;314(5804):1447–50.

    CrossRef  PubMed  CAS  Google Scholar 

  65. Tsai SY, Sennett R, Rezza A, Clavel C, Grisanti L, Zemla R, et al. Wnt/beta-catenin signaling in dermal condensates is required for hair follicle formation. Dev Biol. 2014;385(2):179–88.

    CrossRef  PubMed  CAS  Google Scholar 

  66. Enshell-Seijffers D, Lindon C, Kashiwagi M, Morgan BA. Beta-catenin activity in the dermal papilla regulates morphogenesis and regeneration of hair. Dev Cell. 2010;18(4):633–42.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  67. Huelsken J, Vogel R, Erdmann B, Cotsarelis G, Birchmeier W. beta-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell. 2001;105(4):533–45.

    CrossRef  PubMed  CAS  Google Scholar 

  68. Vidal VP, Chaboissier MC, Lutzkendorf S, Cotsarelis G, Mill P, Hui CC, et al. Sox9 is essential for outer root sheath differentiation and the formation of the hair stem cell compartment. Curr Biol CB. 2005;15(15):1340–51.

    CrossRef  PubMed  CAS  Google Scholar 

  69. Blache P, van de Wetering M, Duluc I, Domon C, Berta P, Freund JN, et al. SOX9 is an intestine crypt transcription factor, is regulated by the Wnt pathway, and represses the CDX2 and MUC2 genes. J Cell Biol. 2004;166(1):37–47.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  70. Liu JA, Wu MH, Yan CH, Chau BK, So H, Ng A, et al. Phosphorylation of Sox9 is required for neural crest delamination and is regulated downstream of BMP and canonical Wnt signaling. Proc Natl Acad Sci U S A. 2013;110(8):2882–7.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  71. Mitra AK, Zillhardt M, Hua Y, Tiwari P, Murmann AE, Peter ME, et al. MicroRNAs reprogram normal fibroblasts into cancer-associated fibroblasts in ovarian cancer. Cancer Discov. 2012;2(12):1100–8.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  72. Penna E, Orso F, Cimino D, Tenaglia E, Lembo A, Quaglino E, et al. microRNA-214 contributes to melanoma tumour progression through suppression of TFAP2C. EMBO J. 2011;30(10):1990–2007.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  73. Penna E, Orso F, Taverna D. miR-214 as a key hub that controls cancer networks: small player, multiple functions. J Invest Dermatol. 2015;135(4):960–9.

    CrossRef  PubMed  CAS  Google Scholar 

  74. Amelio I, Lena AM, Bonanno E, Melino G, Candi E. miR-24 affects hair follicle morphogenesis targeting Tcf-3. Cell Death Dis. 2013;4:e922.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  75. DasGupta R, Fuchs E. Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development. 1999;126(20):4557–68.

    PubMed  CAS  Google Scholar 

  76. Merrill BJ, Gat U, DasGupta R, Fuchs E. Tcf3 and Lef1 regulate lineage differentiation of multipotent stem cells in skin. Genes Dev. 2001;15(13):1688–705.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  77. Botchkarev VA, Kishimoto J. Molecular control of epithelial-mesenchymal interactions during hair follicle cycling. J Invest Dermatol Symp Proc Soc Invest Dermatol Inc [and] Eur Soc Dermatol Res. 2003;8(1):46–55.

    CrossRef  CAS  Google Scholar 

  78. Botchkareva NV, Ahluwalia G, Shander D. Apoptosis in the hair follicle. J Invest Dermatol. 2006;126(2):258–64.

    CrossRef  PubMed  CAS  Google Scholar 

  79. Lee J, Tumbar T. Hairy tale of signaling in hair follicle development and cycling. Semin Cell Dev Biol. 2012;23(8):906–16.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  80. Luan L, Shi J, Yu Z, Andl T. The major miR-31 target genes STK40 and LATS2 and their implications in the regulation of keratinocyte growth and hair differentiation. Exp Dermatol. 2017;26(6):497–504.

    CrossRef  PubMed  CAS  Google Scholar 

  81. Botchkareva NV, Botchkarev VA, Gilchrest BA. Fate of melanocytes during development of the hair follicle pigmentary unit. J Invest Dermatol Symp Proc Soc Invest Dermatol Inc [and] Eur Soc Dermatol Res. 2003;8(1):76–9.

    CrossRef  Google Scholar 

  82. Botchkareva NV, Khlgatian M, Longley BJ, Botchkarev VA, Gilchrest BA. SCF/c-kit signaling is required for cyclic regeneration of the hair pigmentation unit. FASEB J Off Publ Fed Am Soc Exp Biol. 2001;15(3):645–58.

    CAS  Google Scholar 

  83. Hemesath TJ, Steingrimsson E, McGill G, Hansen MJ, Vaught J, Hodgkinson CA, et al. Microphthalmia, a critical factor in melanocyte development, defines a discrete transcription factor family. Genes Dev. 1994;8(22):2770–80.

    CrossRef  PubMed  CAS  Google Scholar 

  84. Levy C, Khaled M, Fisher DE. MITF: master regulator of melanocyte development and melanoma oncogene. Trends Mol Med. 2006;12(9):406–14.

    CrossRef  PubMed  CAS  Google Scholar 

  85. Yavuzer U, Keenan E, Lowings P, Vachtenheim J, Currie G, Goding CR. The Microphthalmia gene product interacts with the retinoblastoma protein in vitro and is a target for deregulation of melanocyte-specific transcription. Oncogene. 1995;10(1):123–34.

    PubMed  CAS  Google Scholar 

  86. Dong C, Wang H, Xue L, Dong Y, Yang L, Fan R, et al. Coat color determination by miR-137 mediated down-regulation of microphthalmia-associated transcription factor in a mouse model. RNA. 2012;18(9):1679–86.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  87. Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M. Growth factors and cytokines in wound healing. Wound Repair Reg Off Publ Wound Healing Soc [and] European Tissue Repair Soc. 2008;16(5):585–601.

    Google Scholar 

  88. Li J, Chen J, Kirsner R. Pathophysiology of acute wound healing. Clin Dermatol. 2007;25(1):9–18.

    CrossRef  PubMed  CAS  Google Scholar 

  89. Schafer M, Werner S. Transcriptional control of wound repair. Annu Rev Cell Dev Biol. 2007;23:69–92.

    CrossRef  PubMed  CAS  Google Scholar 

  90. Shaw TJ, Martin P. Wound repair at a glance. J Cell Sci. 2009;122(Pt 18):3209–13.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  91. Taylor G, Lehrer MS, Jensen PJ, Sun TT, Lavker RM. Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell. 2000;102(4):451–61.

    CrossRef  PubMed  CAS  Google Scholar 

  92. Cotsarelis G. Epithelial stem cells: a folliculocentric view. J Invest Dermatol. 2006;126(7):1459–68.

    CrossRef  PubMed  CAS  Google Scholar 

  93. Langton AK, Herrick SE, Headon DJ. An extended epidermal response heals cutaneous wounds in the absence of a hair follicle stem cell contribution. J Invest Dermatol. 2008;128(5):1311–8.

    CrossRef  PubMed  CAS  Google Scholar 

  94. Levy V, Lindon C, Zheng Y, Harfe BD, Morgan BA. Epidermal stem cells arise from the hair follicle after wounding. FASEB J Off Publ Fed Am Soc Exp Biol. 2007;21(7):1358–66.

    CAS  Google Scholar 

  95. Abe R, Donnelly SC, Peng T, Bucala R, Metz CN. Peripheral blood fibrocytes: differentiation pathway and migration to wound sites. J Immunol. 2001;166(12):7556–62.

    CrossRef  PubMed  CAS  Google Scholar 

  96. Fathke C, Wilson L, Hutter J, Kapoor V, Smith A, Hocking A, et al. Contribution of bone marrow-derived cells to skin: collagen deposition and wound repair. Stem Cells. 2004;22(5):812–22.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  97. Hinz B. Formation and function of the myofibroblast during tissue repair. J Invest Dermatol. 2007;127(3):526–37.

    CrossRef  PubMed  CAS  Google Scholar 

  98. Wu Y, Zhao RC, Tredget EE. Concise review: bone marrow-derived stem/progenitor cells in cutaneous repair and regeneration. Stem Cells. 2010;28(5):905–15.

    PubMed  PubMed Central  CAS  Google Scholar 

  99. Bitterman PB, Rennard SI, Adelberg S, Crystal RG. Role of fibronectin as a growth factor for fibroblasts. J Cell Biol. 1983;97(6):1925–32.

    CrossRef  PubMed  CAS  Google Scholar 

  100. Eckes B, Colucci-Guyon E, Smola H, Nodder S, Babinet C, Krieg T, et al. Impaired wound healing in embryonic and adult mice lacking vimentin. J Cell Sci. 2000;113(Pt 13):2455–62.

    PubMed  CAS  Google Scholar 

  101. Min LJ, Cui TX, Yahata Y, Yamasaki K, Shiuchi T, Liu HW, et al. Regulation of collagen synthesis in mouse skin fibroblasts by distinct angiotensin II receptor subtypes. Endocrinology. 2004;145(1):253–60.

    CrossRef  PubMed  CAS  Google Scholar 

  102. Tiedemann K, Malmstrom A, Westergren-Thorsson G. Cytokine regulation of proteoglycan production in fibroblasts: separate and synergistic effects. Matrix Biol J Int Soc Matrix Biol. 1997;15(7):469–78.

    CrossRef  CAS  Google Scholar 

  103. Jaul E. Non-healing wounds: the geriatric approach. Arch Gerontol Geriatr. 2009;49(2):224–6.

    CrossRef  PubMed  Google Scholar 

  104. Sgonc R, Gruber J. Age-related aspects of cutaneous wound healing: a mini-review. Gerontology. 2013;59(2):159–64.

    CrossRef  PubMed  Google Scholar 

  105. Bentov I, Damodarasamy M, Plymate S, Reed MJ. Decreased proliferative capacity of aged dermal fibroblasts in a three dimensional matrix is associated with reduced IGF1R expression and activation. Biogerontology. 2014;15(4):329–37.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  106. Gosain A, DiPietro LA. Aging and wound healing. World J Surg. 2004;28(3):321–6.

    CrossRef  PubMed  Google Scholar 

  107. Ghatak S, Chan YC, Khanna S, Banerjee J, Weist J, Roy S, et al. Barrier function of the repaired skin is disrupted following arrest of dicer in keratinocytes. Mol Ther. 2015;23(7):1201–10.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  108. Devgan V, Nguyen BC, Oh H, Dotto GP. p21WAF1/Cip1 suppresses keratinocyte differentiation independently of the cell cycle through transcriptional up-regulation of the IGF-I gene. J Biol Chem. 2006;281(41):30463–70.

    CrossRef  PubMed  CAS  Google Scholar 

  109. Li D, Li X, Wang A, Meisgen F, Pivarcsi A, Sonkoly E, et al. MicroRNA-31 promotes skin wound healing by enhancing keratinocyte proliferation and migration. J Invest Dermatol. 2015;135(6):1676–85.

    CrossRef  PubMed  CAS  Google Scholar 

  110. Li D, Wang A, Liu X, Meisgen F, Grunler J, Botusan IR, et al. MicroRNA-132 enhances transition from inflammation to proliferation during wound healing. J Clin Invest. 2015;125(8):3008–26.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  111. Joyce CE, Zhou X, Xia J, Ryan C, Thrash B, Menter A, et al. Deep sequencing of small RNAs from human skin reveals major alterations in the psoriasis miRNAome. Hum Mol Genet. 2011;20(20):4025–40.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  112. Wang A, Landen NX, Meisgen F, Lohcharoenkal W, Stahle M, Sonkoly E, et al. MicroRNA-31 is overexpressed in cutaneous squamous cell carcinoma and regulates cell motility and colony formation ability of tumor cells. PLoS One. 2014;9(7):e103206.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  113. Yan S, Xu Z, Lou F, Zhang L, Ke F, Bai J, et al. NF-kappaB-induced microRNA-31 promotes epidermal hyperplasia by repressing protein phosphatase 6 in psoriasis. Nat Commun. 2015;6:7652.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  114. Durgan J, Tao G, Walters MS, Florey O, Schmidt A, Arbelaez V, et al. SOS1 and Ras regulate epithelial tight junction formation in the human airway through EMP1. EMBO Rep. 2015;16(1):87–96.

    CrossRef  PubMed  CAS  Google Scholar 

  115. Sun GG, Wang YD, Cui DW, Cheng YJ, Hu WN. Epithelial membrane protein 1 negatively regulates cell growth and metastasis in colorectal carcinoma. World J Gastroenterol. 2014;20(14):4001–10.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  116. Sun GG, Wang YD, Lu YF, Hu WN. EMP1, a member of a new family of antiproliferative genes in breast carcinoma. Tumour Biol J Int Soc Oncodevelopmental Biol Med. 2014;35(4):3347–54.

    CrossRef  CAS  Google Scholar 

  117. Li H, Chang L, Du WW, Gupta S, Khorshidi A, Sefton M, et al. Anti-microRNA-378a enhances wound healing process by upregulating integrin beta-3 and vimentin. Mol Ther. 2014;22(10):1839–50.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  118. Gras C, Ratuszny D, Hadamitzky C, Zhang H, Blasczyk R, Figueiredo C. miR-145 contributes to hypertrophic scarring of the skin by inducing myofibroblast activity. Mol Med. 2015;21:296–304.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  119. Kwan P, Ding J, Tredget EE. MicroRNA 181b regulates decorin production by dermal fibroblasts and may be a potential therapy for hypertrophic scar. PLoS One. 2015;10(4):e0123054.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  120. Danielson KG, Baribault H, Holmes DF, Graham H, Kadler KE, Iozzo RV. Targeted disruption of decorin leads to abnormal collagen fibril morphology and skin fragility. J Cell Biol. 1997;136(3):729–43.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  121. Jarvelainen H, Puolakkainen P, Pakkanen S, Brown EL, Hook M, Iozzo RV, et al. A role for decorin in cutaneous wound healing and angiogenesis. Wound Repair Reg Off Publ Wound Healing Soc [and] European Tissue Repair Soc. 2006;14(4):443–52.

    Google Scholar 

  122. Cheng J, Wang Y, Wang D, Wu Y. Identification of collagen 1 as a post-transcriptional target of miR-29b in skin fibroblasts: therapeutic implication for scar reduction. Am J Med Sci. 2013;346(2):98–103.

    CrossRef  PubMed  Google Scholar 

  123. Ciechomska M, O’Reilly S, Suwara M, Bogunia-Kubik K, van Laar JM. MiR-29a reduces TIMP-1 production by dermal fibroblasts via targeting TGF-beta activated kinase 1 binding protein 1, implications for systemic sclerosis. PLoS One. 2014;9(12):e115596.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  124. Maurer B, Stanczyk J, Jungel A, Akhmetshina A, Trenkmann M, Brock M, et al. MicroRNA-29, a key regulator of collagen expression in systemic sclerosis. Arthritis Rheum. 2010;62(6):1733–43.

    CrossRef  PubMed  CAS  Google Scholar 

  125. Pastar I, Khan AA, Stojadinovic O, Lebrun EA, Medina MC, Brem H, et al. Induction of specific microRNAs inhibits cutaneous wound healing. J Biol Chem. 2012;287(35):29324–35.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  126. Frank S, Stallmeyer B, Kampfer H, Kolb N, Pfeilschifter J. Leptin enhances wound re-epithelialization and constitutes a direct function of leptin in skin repair. J Clin Invest. 2000;106(4):501–9.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  127. Murad A, Nath AK, Cha ST, Demir E, Flores-Riveros J, Sierra-Honigmann MR. Leptin is an autocrine/paracrine regulator of wound healing. FASEB J Off Publ Fed Am Soc Exp Biol. 2003;17(13):1895–7.

    CAS  Google Scholar 

  128. Tadokoro S, Ide S, Tokuyama R, Umeki H, Tatehara S, Kataoka S, et al. Leptin promotes wound healing in the skin. PLoS One. 2015;10(3):e0121242.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  129. Ahmed MI, Mardaryev AN, Lewis CJ, Sharov AA, Botchkareva NV. MicroRNA-21 is an important downstream component of BMP signalling in epidermal keratinocytes. J Cell Sci. 2011;124(Pt 20):3399–404.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  130. Lewis CJ, Mardaryev AN, Poterlowicz K, Sharova TY, Aziz A, Sharpe DT, et al. Bone morphogenetic protein signaling suppresses wound-induced skin repair by inhibiting keratinocyte proliferation and migration. J Invest Dermatol. 2014;134(3):827–37.

    CrossRef  PubMed  CAS  Google Scholar 

  131. Lewis CJ, Mardaryev AN, Sharpe DT, Botchkareva NV. Inhibition of bone morphogenetic protein signalling promotes wound healing in a human ex vivo model. Eur J Plast Surg. 2015;38(1):1–12.

    CrossRef  Google Scholar 

  132. Madhyastha R, Madhyastha H, Nakajima Y, Omura S, Maruyama M. MicroRNA signature in diabetic wound healing: promotive role of miR-21 in fibroblast migration. Int Wound J. 2012;9(4):355–61.

    CrossRef  PubMed  CAS  Google Scholar 

  133. Geiger A, Walker A, Nissen E. Human fibrocyte-derived exosomes accelerate wound healing in genetically diabetic mice. Biochem Biophys Res Commun. 2015;467(2):303–9.

    CrossRef  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia V. Botchkareva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Botchkareva, N.V., Yi, R. (2018). Orchestrated Role of microRNAs in Skin Development and Regeneration. In: Botchkarev, V., Millar, S. (eds) Epigenetic Regulation of Skin Development and Regeneration. Stem Cell Biology and Regenerative Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-16769-5_7

Download citation