Skip to main content

DNA Methylation as an Epigenetic Memory Keeper during Skin Development and Regeneration

  • Chapter
  • First Online:
Epigenetic Regulation of Skin Development and Regeneration

Abstract

DNA methylation is one of the best-characterized epigenetic modifications and plays indispensable roles in embryonic development and adult tissue regeneration. In the past decade, progress in epigenetics has advanced our understanding in the molecular basis of this process.

Recent work showed abnormal epidermal differentiation and hair regeneration following suppression of DNA methylation enzymes. Dynamic DNA Methylation studies revealed hierarchies of DNA methylation and regulation of gene expression. Combining these advances has enabled us to gain more understanding of DNA methylation in the regulation of skin biology. Here, we review the known roles of DNA methylation in skin development and regeneration, focusing on embryonic skin lineage commitments and the maintenance of skin homoeostasis, as well as wound healing and regeneration. New directions and potential therapeutic targets are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5mC:

5-methylcytosine

aHF-SC:

active hair follicle stem cells

CpG:

cytosine and guanine separated by one phosphate

DMR:

differentially methylated region

Dnmt1/3a/3b:

DNA methyltransferase 1/3a/3b

HF:

hair follicle

IFE:

interfollicular epidermis

K14:

keratin 14

ORS:

outer root sheath

qHF-SC:

quiescent hair follicle stem cells

TAC:

transient-amplifying matrix cells

Tet:

Ten-eleven translocation methylcytosine dioxygenase

References

  1. Alam H, Sehgal L, Kundu ST, Dalal SN, Vaidya MM. Novel function of keratins 5 and 14 in proliferation and differentiation of stratified epithelial cells. Mol Biol Cell. 2011;22:4068–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Álvarez-Errico D, Vento-Tormo R, Sieweke M, Ballestar E. Epigenetic control of myeloid cell differentiation, identity and function. Nat Rev Immunol. 2014;15:7–17.

    Article  CAS  Google Scholar 

  3. Barrero MJ, Boué S, Izpisúa Belmonte JC. Epigenetic mechanisms that regulate cell identity. Cell Stem Cell. 2010;7:565–70.

    Article  CAS  PubMed  Google Scholar 

  4. Benitah SA, Frye M. Stem cells in ectodermal development. J Mol Med. 2012;90:783–90.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Blanpain C, Lowry WE, Geoghegan A, Polak L, Fuchs E. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell. 2004;118:635–48.

    Article  CAS  PubMed  Google Scholar 

  6. Bock C, Beerman I, Lien WH, Smith ZD, Gu H, Boyle P, Gnirke A, Fuchs E, Rossi DJ, Meissner A. DNA methylation dynamics during in vivo differentiation of blood and skin stem cells. Mol Cell. 2012;47:633–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cheedipudi S, Genolet O, Dobreva G. Epigenetic inheritance of cell fates during embryonic development. Front Genet. 2014;5:19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chueh SC, Lin SJ, Chen CC, Lei M, Wang LM, Widelitz R, Hughes MW, Jiang TX, Chuong CM. Therapeutic strategy for hair regeneration: hair cycle activation, niche environment modulation, wound-induced follicle neogenesis, and stem cell engineering. Expert Opin Biol Ther. 2013;13:377–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Van Deursen JM. The role of senescent cells in ageing. Nature. 2014;509:439–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Driskell I, Oda H, Blanco S, Nascimento E, Humphreys P, Frye M. The histone methyltransferase Setd8 acts in concert with c-Myc and is required to maintain skin. EMBO J. 2012;31:616–29.

    Article  CAS  PubMed  Google Scholar 

  11. Du J, Johnson LM, Jacobsen SE, Patel DJ. DNA methylation pathways and their crosstalk with histone methylation. Nat Rev Mol Cell Biol. 2015;16:519–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Edwards JR, Yarychkivska O, Boulard M, Bestor TH. DNA methylation and DNA methyltransferases. Epigenetics Chromatin. 2017;10:23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ezhkova E, Pasolli HA, Parker JS, Stokes N, Su IH, Hannon G, Tarakhovsky A, Fuchs E. Ezh2 orchestrates gene expression for the stepwise differentiation of tissue-specific stem cells. Cell. 2009;136:1122–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ezhkova E, Lien WH, Stokes N, Pasolli HA, Silva JM, Fuchs E. EZH1 and EZH2 cogovern histone H3K27 trimethylation and are essential for hair follicle homeostasis and wound repair. Genes Dev. 2011;25:485–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fuchs E. Scratching the surface of skin development. Nature. 2007;445:834–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gao L, van den Hurk K, Moerkerk PT, Goeman JJ, Beck S, Gruis NA, van den Oord JJ, Winnepenninckx VJ, van Engeland M, van Doorn R. Promoter CpG island hypermethylation in dysplastic nevus and melanoma: CLDN11 as an epigenetic biomarker for malignancy. J Invest Dermatol. 2014;134:2957–66.

    Article  CAS  PubMed  Google Scholar 

  17. Hoi CS, Lee SE, Lu SY, McDermitt DJ, Osorio KM, Piskun CM, Peters RM, Paus R, Tumbar T. Runx1 directly promotes proliferation of hair follicle stem cells and epithelial tumor formation in mouse skin. Mol Cell Biol. 2010;30:2518–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Howell CY, Bestor TH, Ding F, Latham KE, Mertineit C, Trasler JM, Chaillet JR. Genomic imprinting disrupted by a maternal effect mutation in the Dnmt1 gene. Cell. 2001;104:829–38.

    Article  CAS  PubMed  Google Scholar 

  19. Hsu YC, Li L, Fuchs E. Emerging interactions between skin stem cells and their niches. Nat Med. 2014;20:847–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hughes MW, Jiang TX, Lin SJ, Leung Y, Kobielak K, Widelitz RB, Chuong CM. Disrupted ectodermal organ morphogenesis in mice with a conditional histone deacetylase 1, 2 deletion in the epidermis. J Invest Dermatol. 2014;134:24–32.

    Article  CAS  PubMed  Google Scholar 

  21. Ikeda Y, Nishimura T. The role of DNA methylation in transposable element silencing and genomic imprinting. In: Pontes O, Jin H, editors. Nuclear functions in plant transcription, signaling and development. Springer New York: New York; 2015. p. 13–29.

    Chapter  Google Scholar 

  22. Indra AK, Dupé V, Bornert JM, Messaddeq N, Yaniv M, Mark M, Chambon P, Metzger D. Temporally controlled targeted somatic mutagenesis in embryonic surface ectoderm and fetal epidermal keratinocytes unveils two distinct developmental functions of BRG1 in limb morphogenesis and skin barrier formation. Development. 2005;132:4533–44.

    Article  CAS  PubMed  Google Scholar 

  23. Isagawa T, Nagae G, Shiraki N, Fujita T, Sato N, Ishikawa S, Kume S, Aburatani H. DNA methylation profiling of embryonic stem cell differentiation into the three germ layers. PLoS One. 2011;6:e26052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ito M, Liu Y, Yang Z, Nguyen J, Liang F, Morris RJ, Cotsarelis G. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat Med. 2005;11:1351–4.

    Article  CAS  PubMed  Google Scholar 

  25. Kashiwagi M, Morgan BA, Georgopoulos K. The chromatin remodeler Mi-2beta is required for establishment of the basal epidermis and normal differentiation of its progeny. Development. 2007;134:1571–82.

    Article  CAS  PubMed  Google Scholar 

  26. Lauss M, Haq R, Cirenajwis H, Phung B, Harbst K, Staaf J, Rosengren F, Holm K, Aine M, Jirström K, et al. Genome-Wide DNA methylation analysis in melanoma reveals the importance of CpG methylation in MITF regulation. J Invest Dermatol. 2015;135:1820–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee HJ, Hore TA, Reik W. Reprogramming the methylome: erasing memory and creating diversity. Cell Stem Cell. 2014;14:710–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lei M, Chuong CM. STEM CELLS. Aging, alopecia, and stem cells. Science. 2016;351:559–60.

    Article  CAS  PubMed  Google Scholar 

  29. Li E, Zhang Y. DNA methylation in mammals. Cold Spring Harb Perspect Biol. 2014;6:a019133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li E, Bestor TH, Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell. 1992;69:915–26.

    Article  CAS  PubMed  Google Scholar 

  31. Li J, Jiang TX, Hughes MW, Wu P, Yu J, Widelitz RB, Fan G, Chuong CM. Progressive alopecia reveals decreasing stem cell activation probability during aging of mice with epidermal deletion of DNA methyltransferase 1. J Invest Dermatol. 2012;132:2681–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li Y, Sawalha AH, Lu Q. Aberrant DNA methylation in skin diseases. J Dermatol Sci. 2009;54:143–9.

    Article  CAS  PubMed  Google Scholar 

  33. Lien WH, Guo X, Polak L, Lawton LN, Young RA, Zheng D, Fuchs E. Genome-wide maps of histone modifications unwind in vivo chromatin states of the hair follicle lineage. Cell Stem Cell. 2011;9:219–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lowdon RF, Zhang B, Bilenky M, Mauro T, Li D, Gascard P, Sigaroudinia M, Farnham PJ, Bastian BC, Tlsty TD, et al. Regulatory network decoded from epigenomes of surface ectoderm-derived cell types. Nat Commun. 2014;5:5442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Matsumura H, Mohri Y, Binh NT, Morinaga H, Fukuda M, Ito M, Kurata S, Hoeijmakers J, Nishimura EK. Hair follicle aging is driven by transepidermal elimination of stem cells via COL17A1 proteolysis. Science. 2016;351:aad4395.

    Article  CAS  PubMed  Google Scholar 

  36. Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A, Zhang X, Bernstein BE, Nusbaum C, Jaffe DB, et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature. 2008;454:766–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mejetta S, Morey L, Pascual G, Kuebler B, Mysliwiec MR, Lee Y, Shiekhattar R, Di Croce L, Benitah SA. Jarid2 regulates mouse epidermal stem cell activation and differentiation. EMBO J. 2011;30:3635–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mohandas T, Sparkes RS, Shapiro LJ. Reactivation of an inactive human X chromosome: evidence for X inactivation by DNA methylation. Science. 1981;211:393–6.

    Article  CAS  PubMed  Google Scholar 

  39. Novershtern N, Subramanian A, Lawton LN, Mak RH, Haining WN, McConkey ME, Habib N, Yosef N, Chang CY, Shay T, et al. Densely interconnected transcriptional circuits control cell states in human hematopoiesis. Cell. 2011;144:296–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999;99:247–57.

    Article  CAS  PubMed  Google Scholar 

  41. Rakyan VK, Down TA, Balding DJ, Beck S. Epigenome-wide association studies for common human diseases. Nat Rev Genet. 2011;12:529–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ratnam S, Mertineit C, Ding F, Howell CY, Clarke HJ, Bestor TH, Chaillet JR, Trasler JM. Dynamics of Dnmt1 methyltransferase expression and intracellular localization during oogenesis and preimplantation development. Dev Biol. 2002;245:304–14.

    Article  CAS  PubMed  Google Scholar 

  43. Rinaldi L, Avgustinova A, Martín M, Datta D, Solanas G, Prats N, Benitah SA. Loss of Dnmt3a and Dnmt3b does not affect epidermal homeostasis but promotes squamous transformation through PPAR-γ. elife. 2017;6(pii):e21697.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Rinaldi L, Datta D, Serrat J, Morey L, Solana G, Avgustinova A, Blanco E, Pons JI, Matallanas D, Von Kriegsheim A, Di Croce L, Benitah SA. Dnmt3a and Dnmt3b associate with enhancers to regulate human epidermal stem cell homeostasis. Cell Stem Cell. 2016;19:491–501.

    Article  CAS  PubMed  Google Scholar 

  45. Sen GL, Reuter JA, Webster DE, Zhu L, Khavari PA. DNMT1 maintains progenitor function in self-renewing somatic tissue. Nature. 2010;463:563–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shipony Z, Mukamel Z, Cohen NM, Landan G, Chomsky E, Zeliger SR, Fried YC, Ainbinder E, Friedman N, Tanay A. Dynamic and static maintenance of epigenetic memory in pluripotent and somatic cells. Nature. 2014;513:115–9.

    Article  CAS  PubMed  Google Scholar 

  47. Smith ZD, Meissner A. DNA methylation: roles in mammalian development. Nat Rev Genet. 2013;14:204–20.

    Article  CAS  PubMed  Google Scholar 

  48. Zhang P, Zhao M, Liang G, Yin G, Huang D, Su F, Zhai H, Wang L, Su Y, Lu Q. Whole-genome DNA methylation in skin lesions from patients with psoriasis vulgaris. J Autoimmun. 2013;41:17–24.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Chuong lab members for their critical review of the manuscript and discussion. We thank the following funding sources: Dr. C.-M. Chuong and Dr. R.B. Widelitz are supported by National Institute of Arthritis and Musculoskeletal and Skin Diseases grants RO1-AR47364 and -AR60306; Dr. Y.-C. Liang is supported by the Overseas Postdoctoral Program for Frontier Technologies (102-2917-I-564-002-A1), the Ministry of Science and Technology, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Ming Chuong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liang, YC., Widelitz, R., Chuong, CM. (2018). DNA Methylation as an Epigenetic Memory Keeper during Skin Development and Regeneration. In: Botchkarev, V., Millar, S. (eds) Epigenetic Regulation of Skin Development and Regeneration. Stem Cell Biology and Regenerative Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-16769-5_2

Download citation

Publish with us

Policies and ethics