Advertisement

Monte-Carlo Modelling and Experimental Study of Radon and Progeny Radiation Detectors for Open Environment

  • Sofia KottouEmail author
  • Dimitrios Nikolopoulos
  • Ermioni Petraki
  • Debabrata Bhattacharyya
  • Paul B. Kirby
  • Tamara M. Berberashvili
  • Lali A. Chakhvashvili
  • Paata J. Kervalishvili
  • Panayiotis H. Yannakopoulos
Chapter

Abstract

Solid state nuclear track detectors (SSNTDs) have been widely used as sensors of radon and progeny in long-term dosimetry because they exhibit high detection properties while their cost is very low. Alpha-particle energy calculating codes, specific for every incident particle, increase the Monte-Carlo simulation time significantly. The expression of the alpha particle energy as a function of the distance travelled in SSNTD CR-39 was recently introduced as an alternative approximation for the simulation method. This chapter focused on modelling the response of bare CR-39 detectors to alpha-particles emitted by radon and progeny, through Monte-Carlo methods. In order to determine the efficiency of a combined use of bare CR-39 and cup-type detectors in radon measurements, theoretical and experimental CR-39 efficiency factors for alpha-particles were calculated. Modelling rendered calculation of effective volume for CR-39 detector, based on energy and angular distributions of alpha-particles emitted due to decay of radon and progeny. The relationship between equilibrium factor F and the recorded track density values ratio (of bare and cup-enclosed SSNTDs, respectively) R was calculated. The sensitivity factor kB for bare CR-39 was found equal to kB = (4.6 ± 0.6) [tracks × cm−2]/[kBq × m−3 × h] (assuming the Jacobi’s steady-state model), a value not significantly different from the corresponding kR cup-type value for radon and progeny.

Keywords

Radon and progeny radiation SSNT detectors Equilibrium factor Recorded track density 

Notes

Acknowledgement

This work has been co-financed by the Seventh Framework Programme, Grant agreement no: 294299, Acronym SENS-ERA.

References

  1. 1.
    Nazaroff WW, Nero AV (1988) Radon and its decay products in indoor air. Wiley, New York. ISBN 0-471-62810-7Google Scholar
  2. 2.
    UNSCEAR United Nations Scientific Committee on the Effects of Atomic Radiation (2008) Sources and effects of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation. UNSCEAR 2008 Report to the General Assembly with Scientific Annexes, United Nations, New YorkGoogle Scholar
  3. 3.
    Stajic J, Nikezic D (2011) Detection efficiency of a disk shaped detector with a critical detection angle for particles with a finite range emitted by a point-like source. Appl Radiat Isot 70(3):528–532CrossRefGoogle Scholar
  4. 4.
    Yu KN, Nikezic D (2011) Long-term measurements of unattached radon progeny concentrations using solid-state nuclear track detectors. Appl Radiat Isot 70(7):1104–1106CrossRefGoogle Scholar
  5. 5.
    Nikezic D, Yu KN (2010) Long-term determination of airborne concentrations of unattached and attached radon progeny using stacked LR 115 detector with multi-step etching. Nucl Instrum Methods Phys Res A 613(2):245–250CrossRefGoogle Scholar
  6. 6.
    Eappen KP, Mayya YS, Patnaik RL, Kushwaha HS (2006) Estimation of radon progeny equilibrium factors and their uncertainty bounds using solid state nuclear track detectors. Radiat Meas 41:342–348CrossRefGoogle Scholar
  7. 7.
    Sima O (2001) Monte Carlo simulation of radon SSNT detectors. Radiat Meas 34(1–6):181–186. doi: 10.1016/S1350-4487(01)00147-0 CrossRefGoogle Scholar
  8. 8.
    Nikezic D (1994) Determination of detector efficiency for radon and radon daughters with C39 track detector a Monte Carlo study. Nucl Instrum Methods Phys Res A 344:406–414CrossRefGoogle Scholar
  9. 9.
    Faj Z, Planinic J (1991) Dosimetry of radon and its daughters by two SSSN detectors. Radiat Prot Dosimetry 35(4):265–268Google Scholar
  10. 10.
    Sima O (1995) Computation of the calibration factor for the cup type SSNTD radon monitor. Radiat Meas 25(1–4):603–606CrossRefGoogle Scholar
  11. 11.
    Nikezić D, Kostić D, Krstić D, Savović S (1995) Sensitivity of radon measurements with CR-39 track etch detector—a Monte Carlo study. Radiat Meas 25(1–4):647–648CrossRefGoogle Scholar
  12. 12.
    Kappel RJA, Keller G, Nickels RM, Leiner U (1997) Monte Carlo computation of the calibration factor for 222Rn measurements with electrochemically etched polycarbonate nuclear track detectors. Radiat Prot Dosimetry 71(4):261–268CrossRefGoogle Scholar
  13. 13.
    Nikezić D, Yu KN (2000) Monte Carlo calculations of LR115 detector response to 222Rn in the presence of 220Rn. Health Phys 78(4):414–419CrossRefGoogle Scholar
  14. 14.
    Rehman F-U, Jamil K, Zakaullah M, Abu-Jarad F, Mujahid SA (2003) Experimental and Monte Carlo simulation studies of open cylindrical radon monitoring device using CR-39 detector. J Environ Radioact 65:243–254CrossRefGoogle Scholar
  15. 15.
    Rickards J, Golzarri J-I, Espinosa G (2010) A Monte Carlo study of radon detection in cylindrical diffusion chambers. J Environ Radioact 101(5):333–337. doi: 10.1016/j.jenvrad.2010.01.003 CrossRefGoogle Scholar
  16. 16.
    Rezaae MR, Nejad R (2012) Response of CR- 39 detector to radon in water using Monte Carlo simulation. Iran J Med Phys 9(3):193–201Google Scholar
  17. 17.
    Rezaae MR, Sohrabi M, Negarestani A (2013) Studying the response of CR-39 to Radon in non-polar liquids above water by Monte Carlo simulation and measurement. Radiat Meas 50:103–108CrossRefGoogle Scholar
  18. 18.
    Planinic J, Faj Z (1989) The equilibrium factor F between radon and its daughters. Nucl Instrum Methods Phys Res A 278:550–552CrossRefGoogle Scholar
  19. 19.
    Planinic J, Faj Z (1990) Equilibrium factor and dosimetry of radon by a nuclear track detector. Health Phys 59(3):349–351Google Scholar
  20. 20.
    Amgarou K, Font L, Baixeras C (2003) A novel approach for long-term determination of indoor 222 Rn progeny equilibrium factor using nuclear track detectors. Nucl Instrum Methods Phys Res A 506:186–198CrossRefGoogle Scholar
  21. 21.
    Abo-Elmagd M, Mansy M, Eissa HM, El-Fiki MA (2006) Major parameters affecting the calculation of equilibrium factor using SSNTD-measured track densities. Radiat Meas 41:235–240CrossRefGoogle Scholar
  22. 22.
    Nikezić D, Yu KN (1999) Relationship between the 210Po activity incorporated in the surface of an object and the potential α-energy concentration. J Environ Radioact 47(1):45–55CrossRefGoogle Scholar
  23. 23.
    Paul H (2006) A comparison of recent stopping power tables for light and medium-heavy ions with experimental data, and applications to radiotherapy dosimetry. Nucl Instrum Methods Phys Res B 247(2):166–172CrossRefGoogle Scholar
  24. 24.
    Cliff KD, Wrixon AD, Green BMR, Miles JCH (1983) Radon daughter exposures in the U. K. Health Phys 45:323–330CrossRefGoogle Scholar
  25. 25.
    Nikolopoulos D, Vogiannis E (2007) Modelling radon progeny concentration variations in thermal spas. Sci Total Environ 373(1):82–93CrossRefGoogle Scholar
  26. 26.
    Nikolopoulos D, Vogiannis E, Petraki E, Zisos A, Louizi A (2010) Investigation of the exposure to radon and progeny in the thermal spas of Loutraki (Attica-Greece): results from measurements and modeling. Sci Total Environ 408:495–504CrossRefGoogle Scholar
  27. 27.
    Nikolopoulos D, Vogiannis E, Petraki E, Kottou S, Yannakopoulos P, Leontaridou M, Louizi A (2013) Dosimetry modelling of transient radon and progeny concentration peaks: results from in situ measurements in Ikaria spas, Greece. Environ Sci Process Impacts 15:1216–1227CrossRefGoogle Scholar
  28. 28.
    Porstendorfer J, Pagelkopf P, Grundel M (2005) Fraction of the positive 218Po and 214Pb clusters in indoor air. Radiat Prot Dosimetry 113(3):342–351CrossRefGoogle Scholar
  29. 29.
    Jacobi W (1972) Activity and potential a-energy of 222Rn and 222Rn daughters in different air atmospheres. Health Phys 22:441–450CrossRefGoogle Scholar
  30. 30.
    Nikolopoulos D, Louizi A, Petropoulos N, Simopoulos S, Proukakis C (1999) Experimental study of the response of cup-type radon dosemeters. Radiat Prot Dosimetry 83(3):263–266CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Sofia Kottou
    • 1
    Email author
  • Dimitrios Nikolopoulos
    • 2
  • Ermioni Petraki
    • 2
    • 3
  • Debabrata Bhattacharyya
    • 4
  • Paul B. Kirby
    • 4
  • Tamara M. Berberashvili
    • 5
  • Lali A. Chakhvashvili
    • 5
  • Paata J. Kervalishvili
    • 5
  • Panayiotis H. Yannakopoulos
    • 2
  1. 1.Medical Physics Department, Medical SchoolUniversity of AthensAthensGreece
  2. 2.Department of Electronic Computer Systems EngineeringTEI of PiraeusAigaleoGreece
  3. 3.Kingston LaneMiddlesexUK
  4. 4.Manufacturing and Materials DepartmentCranfield UniversityCranfieldUK
  5. 5.Georgian Technical UniversityTbilisiGeorgia

Personalised recommendations