Skip to main content

Complex-Valued Wavelet Neural Network Prediction of the Daily Global Solar Irradiation of the Great Maghreb Region

  • Chapter
Progress in Clean Energy, Volume 1

Abstract

In this chapter, the prediction of the daily global solar irradiation of the great Maghreb region using the complex-valued wavelet neural network (CVWNN) is presented. Both multi-input single output (MISO) and multi-input multi-output (MIMO) strategies are considered. The meteorological data of the capitals of the great Maghreb, which are Tripoli (Libya), Tunis (Tunisia), Algiers (Algeria), Rabat (Morocco), El Aaiun (Western Sahara), and Nouakchott (Mauritania), are used like samples from each country. To test the applicability and the feasibility of the CWNN to predict the daily global irradiation for the great Maghreb case, several models are presented. Results obtained throughout this chapter show that the CWN technique is suitable for prediction of the daily solar irradiation of the great Maghreb region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CVWNN:

Split complex-valued wavelet neural networks

n :

Number of inputs

m :

Number of neurons in the hidden layer

l :

Number of output

X n :

Input vector

t m :

Translations of the hidden neurons

d m :

Dilations of the hidden neurons

f 1C (.):

Complex-valued wavelet used for the hidden layer

f 2C (.):

Complex-valued activation function used for the output layer

\( j=\sqrt{-1} \) :

Imaginary unit

y l :

lth desired output

ŷ l :

lth predicted output

t C(d):

Complex-valued temporal index, d = 1, …, 365

T m :

Daily air temperature, °C

H m :

Relative humidity, %

G m :

Daily global solar irradiation, kJ/m2

T d :

Complex-valued daily air temperature

H d :

Complex-valued relative humidity

G d :

Complex-valued daily global solar irradiation

nRMSE:

Normalized root mean squared error, %

R 2 :

Coefficient of determination, %

MAE:

Mean absolute error, %

N :

Number of samples

MIMO:

Multi input multi output

MISO:

Multi input single output

References

  1. Mellit A, Mekki H, Messai A, Kalogirou SA (2011) FPGA-based implementation of intelligent predictor for global solar irradiation, part I: theory and simulation. Expert Syst Appl 38:2668–2685

    Article  Google Scholar 

  2. Mellit A, Pavan AM (2010) A 24-h forecast of solar irradiance using artificial neural network: application for performance prediction of a grid-connected PV plant at Trieste, Italy. Sol Energy 84:807–821

    Article  Google Scholar 

  3. Solanki SK, Krivova NA, Wenzler T (2005) Irradiance models. Adv Space Res 35:376–383

    Article  Google Scholar 

  4. Kalogirou S, Sencan A (2010) Artificial intelligence techniques in solar energy applications. In: Manyala R (ed) Solar collectors and panels, theory and applications. InTech, Rijeka

    Google Scholar 

  5. Winslow JC, Hunt ER Jr, Piper SC (2001) A globally applicable model of daily solar irradiance estimated from air temperature and precipitation data. Ecol Model 143:227–243

    Article  Google Scholar 

  6. El-Sebaii AA, Al-Hazmi FS, Al-Ghamdi AA, Yaghmour SJ (2010) Global, direct and diffuse solar radiation on horizontal and tilted surfaces in Jeddah, Saudi Arabia. Appl Energy 87:568–576

    Article  Google Scholar 

  7. Mefti A, Bouroubi MY, Adane A (2003) Generation of hourly solar radiation for inclined surfaces using monthly mean sunshine duration in Algeria. Energy Convers Manage 44:3125–3141

    Article  Google Scholar 

  8. Dazhi Y, Jirutitijaroen P, Walsh WM (2012) Hourly solar irradiance time series forecasting using cloud cover index. Sol Energy 86:3531–3543

    Article  Google Scholar 

  9. Mellit A, Eleuch H, Benghanem M, Elaoun C, Massi Pavan A (2010) An adaptive model for predicting of global, direct and diffuse hourly solar irradiance. Energy Convers Manage 51:771–782

    Article  Google Scholar 

  10. Martin L, Zarzalejo LF, Polo J, Navarro A, Marchante R, Cony M (2010) Prediction of global solar irradiance based on time series analysis: application to solar thermal power plants energy production planning. Sol Energy 84:1772–1781

    Article  Google Scholar 

  11. Gueymard CA (2009) Direct and indirect uncertainties in the prediction of tilted irradiance for solar engineering applications. Sol Energy 83:432–444

    Article  Google Scholar 

  12. Marquez R, Coimbra CFM (2011) Forecasting of global and direct solar irradiance using stochastic learning methods, ground experiments and the NWS database. Sol Energy 85:746–756

    Article  Google Scholar 

  13. Notton G, Paoli C, Vasileva S, Nivet ML, Canaletti J-L, Cristofari C (2012) Estimation of hourly global solar irradiation on tilted planes from horizontal one using artificial neural networks. Energy 39:166–179

    Article  Google Scholar 

  14. Zervas PL, Sarimveis H, Palyvos JA, Markatos NCG (2008) Prediction of daily global solar irradiance on horizontal surfaces based on neural-network techniques. Renew Energy 33:1796–1803

    Article  Google Scholar 

  15. Paoli C, Voyant C, Muselli M, Nivet M-L (2010) Forecasting of preprocessed daily solar radiation time series using neural networks. Sol Energy 84(12):2146–2160

    Article  Google Scholar 

  16. Mellit A, Benghanem M, Kalogirou SA (2006) An adaptive wavelet-network model for forecasting daily total solar radiation. Appl Energy 83:705–722

    Article  Google Scholar 

  17. Wang Z, Wang F, Su S (2011) Solar irradiance short-term prediction model based on BP neural network. In: ICSGCE 2011, 27–30 Sept 2011, Chengdu, China, Energy Procedia 12:488–494

    Google Scholar 

  18. Cao S, Cao J (2005) Forecast of solar irradiance using recurrent neural networks combined with wavelet analysis. Appl Therm Eng 25:161–172

    Article  Google Scholar 

  19. Saad Saoud L, Rahmoune F, Tourtchine V, Baddari K (2013) Complex-valued forecasting of global solar irradiance. J Renew Sustain Energy 5(4):043124–043145

    Article  Google Scholar 

  20. Rattan SSP, Hsieh WW (2005) Complex-valued neural networks for nonlinear complex principal component analysis. Neural Netw 18:61–69

    Article  MATH  Google Scholar 

  21. Goh SL, Chen M, Popovic DH, Aihara K, Obradovic D, Mandic DP (2006) Complex-valued forecasting of wind profile. Renew Energy 31:1733–1750

    Article  Google Scholar 

  22. Tripathi B, Chandra KB, Singh M, Kalra PK (2011) Complex generalized-mean neuron model and its applications. Appl Soft Comput 11:768–777

    Article  Google Scholar 

  23. Saad Saoud L, Rahmoune F, Tourtchine V, Baddari K (2011) Wavelet network implementation on an inexpensive eight bit microcontroller. In: Kamanina NV (ed) Features of liquid crystal display materials and processes. Intech, Rijeka, pp 87–102

    Google Scholar 

  24. Zhang Q, Benveniste A (1992) Wavelet networks. IEEE Trans Neural Netw 3(6):889–898

    Article  MathSciNet  Google Scholar 

  25. Pati YC, Krishnaprasad PS (1993) Analysis and synthesis of feedforward neural networks using discrete affine wavelet transformations. IEEE Trans Neural Netw 4:73–85

    Article  Google Scholar 

  26. Hong J (1992) Identification of stable systems by wavelet transform and artificial neural networks. Ph.D. dissertation, University of Pittsburgh, Pittsburgh

    Google Scholar 

  27. Tsatsanis MK, Giannakis GB (1993) Time-varying system identification and model validation using wavelets. IEEE Trans Signal Process 41:3512–3523

    Article  MATH  Google Scholar 

  28. Kreinovich V, Sirisaengtaksin O, Cabrera S (1994) Wavelet neural networks are asymptotically optimal approximators for functions of one variable. In: Proceeding IEEE international conference on neural networks, Orlando, pp 299–304

    Google Scholar 

  29. Delyon B, Juditskyand A, Benveniste A (1995) Accuracy analysis for wavelet approximations. IEEE Trans Neural Netw 6:332–348

    Article  Google Scholar 

  30. Özbay Y, Kara S, Latifoğlu F, Ceylan R, Ceylan M (2007) Complex-valued wavelet artificial neural network for Doppler signals classifying. Artif Intell Med 40(2):143–156

    Article  Google Scholar 

  31. Nitta T (1997) An extension of the back-propagation algorithm to complex numbers. Neural Netw 10(8):1391–1415

    Article  Google Scholar 

  32. Özdemir N, Iskender BB, Özgür NY (2011) Complex valued neural network with Möbius activation function. Comm Nonlinear Sci Numer Simulat 16:4698–4703

    Article  MATH  Google Scholar 

  33. Educypedia (2013) http://educypedia.karadimov.info/education/atlastopics.htm. Acceded August 2013

  34. NASA Database (2013) https://eosweb.larc.nasa.gov/cgi-bin/sse/. Acceded Mar 2013

  35. Drossu R, Obradovic Z (1996) Rapid design of neural networks for time series prediction. IEEE Comput Sci Eng 3(2):78–89, ISSN 1070-9924

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lyes Saad Saoud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Saad Saoud, L., Rahmoune, F., Tourtchine, V., Baddari, K. (2015). Complex-Valued Wavelet Neural Network Prediction of the Daily Global Solar Irradiation of the Great Maghreb Region. In: Dincer, I., Colpan, C., Kizilkan, O., Ezan, M. (eds) Progress in Clean Energy, Volume 1. Springer, Cham. https://doi.org/10.1007/978-3-319-16709-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16709-1_23

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16708-4

  • Online ISBN: 978-3-319-16709-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics