Skip to main content

Rapidly Registering Identity-by-Descent Across Ancestral Recombination Graphs

  • 2709 Accesses

Part of the Lecture Notes in Computer Science book series (LNBI,volume 9029)

Abstract

The genomes of remotely related individuals occasionally contain long segments that are Identical By Descent (IBD). Sharing of IBD segments has many applications in population and medical genetics, and it is thus desirable to study their properties in simulations. However, no current method provides a direct, efficient means to extract IBD segments from simulated genealogies. Here, we introduce computationally efficient approaches to extract ground-truth IBD segments from a sequence of genealogies, or equivalently, an ancestral recombination graph. Specifically, we use a two-step scheme, where we first identify putative shared segments by comparing the common ancestors of all pairs of individuals at some distance apart. This reduces the search space considerably, and we then proceed by determining the true IBD status of the candidate segments. Under some assumptions and when allowing a limited resolution of segment lengths, our run-time complexity is reduced from \(O(n^3\log n)\) for the naïve algorithm to \(O(n\log n)\), where \(n\) is the number of individuals in the sample.

Keywords

  • Identity by Descent
  • Ancestral Recombination Graphs
  • Population Genetics
  • Simulation

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-16706-0_35
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-16706-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albrechtsen, A., Moltke, I., Nielsen, R.: Natural selection and the distribution of identity-by-descent in the human genome. Genetics 186(1), 295–308 (2010)

    CrossRef  Google Scholar 

  2. Beaumont, M.A., Zhang, W., Balding, D.J.: Approximate Bayesian computation in population genetics. Genetics 162(4), 2025–2035 (2002)

    Google Scholar 

  3. Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Gonnet, G., Panario, D., Viola, A., (eds.): LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, London (2000)

    Google Scholar 

  4. Berkman, O., Galil, Z., Schieber, B., Vishkin, U.: Highly parallelizable problems. In: Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing, STOC 1989, pp. 309–319. ACM, New York (1989)

    Google Scholar 

  5. Browning, B.L., Browning, S.R.: A fast, powerful method for detecting identity by descent. Am. J. Hum. Genet. 88(2), 173–182 (2011)

    CrossRef  Google Scholar 

  6. Browning, B.L., Browning, S.R.: Detecting identity by descent and estimating genotype error rates in sequence data. Am. J. Hum. Genet. 93(5), 840–851 (2013)

    CrossRef  Google Scholar 

  7. Carmi, S., Palamara, P.F., Vacic, V., Lencz, T., Darvasi, A., Pe’er, I.: The variance of identity-by-descent sharing in the Wright-Fisher model. Genetics 193(3), 911–928 (2013)

    CrossRef  Google Scholar 

  8. Carmi, S., Wilton, P.R., Wakeley, J., Pe’er, I.: A renewal theory approach to IBD sharing. Theor. Popul. Biol. 97, 35–48 (2014)

    CrossRef  MATH  Google Scholar 

  9. Chiang, C.W.K., Ralph, P., Novembre, J.: Conflations of short IBD blocks can bias inferred length of IBD (2014)

    Google Scholar 

  10. Conrad, D.F., Jakobsson, M., Coop, G., Wen, X., Wall, J.D., Rosenberg, N.A., Pritchard, J.K.: A worldwide survey of haplotype variation and linkage disequilibrium in the human genome. Nat. Genet. 38, 1251–1260 (2006)

    CrossRef  Google Scholar 

  11. Consortium, T.W.T.C.C.: Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007)

    Google Scholar 

  12. Excoffier, L., Foll, M.: Fastsimcoal: a continuous-time coalescent simulator of genomic diversity under arbitrarily complex evolutionary scenarios. Bioinformatics (2011)

    Google Scholar 

  13. Excoffier, L., Dupanloup, I., Huerta-Sánchez, E., Sousa, V.C., Foll, M.: Robust demographic inference from genomic and SNP data. PLoS Genet. 9(10), e1003905 (2013)

    Google Scholar 

  14. Fearnhead, P., Donnelly, P.: Estimating recombination rates from population genetic data. Genetics 159(3), 1299–1318 (2001)

    Google Scholar 

  15. Griffiths, R.C., Marjoram, P.: Ancestral inference from samples of DNA sequences with recombination. J. Comput. Biol. 3(4), 479–502 (1996)

    CrossRef  Google Scholar 

  16. Gershon, E., Shaked, U.: Applications. In: Gershon, E., Shaked, U. (eds.) Advanced Topics in Control and Estimation of State-multiplicative Noisy Systems. LNCIS, vol. 439, pp. 201–216. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  17. Guha, S., Rosenfeld, J.A., Malhotra, A.K., Lee, A.T., Gregersen, P.K., Kane, J.M., Pe’er, I., Darvasi, A., Lencz, T.: Implications for health and disease in the genetic signature of the Ashkenazi Jewish population. Genome Biol. 13, R2 (2012)

    CrossRef  Google Scholar 

  18. Gusev, A., Lowe, J.K., Stoffel, M., Daly, M.J., Altshuler, D., Breslow, J.L., Friedman, J.M., Pe’er, I.: Whole population, genome-wide mapping of hidden relatedness. Genome Res. 19(2), 318–326 (2009)

    CrossRef  Google Scholar 

  19. Gusev, A., Kenny, E.E., Lowe, J.K., Salit, J., Saxena, R., Kathiresan, S., Altshuler, D.M., Friedman, J.M., Breslow, J.L., Pe’er, I.: DASH: A method for identical-by-descent haplotype mapping uncovers association with recent variation. Am. J. Hum. Genet. 88(6), 706–717 (2011)

    CrossRef  Google Scholar 

  20. Gusev, A., Palamara, P.F., Aponte, G., Zhuang, Z., Darvasi, A., Gregersen, P., Pe’er, I.: The architecture of long-range haplotypes shared within and across populations. Mol. Biol. Evol. 29(2), 473–486 (2012)

    CrossRef  Google Scholar 

  21. Harris, K., Nielsen, R.: Inferring demographic history from a spectrum of shared haplotype lengths. PLoS Genet. 9, e1003521 (2013)

    CrossRef  Google Scholar 

  22. Henn, B.M., Cavalli-Sforza, L.L., Feldman, M.W.: The great human expansion. Proc. Natl. Acad. Sci. USA 109, 17758–17764 (2012)

    CrossRef  Google Scholar 

  23. Henn, B.M., Hon, L., Macpherson, J.M., Eriksson, N., Saxonov, S., Pe’er, I., Mountain, J.L.: Cryptic distant relatives are common in both isolated and cosmopolitan genetic samples. PLoS One 7(4), e34267 (2012)

    Google Scholar 

  24. Hudson, R.R.: Gene genealogies and the coalescent process. Oxford surveys in evolutionary biology 7(1), 44 (1990)

    Google Scholar 

  25. Hudson, R.R.: Properties of a neutral allele model with intragenic recombination. Theor. Popul. Biol. 23(2), 183–201 (1983)

    CrossRef  MATH  Google Scholar 

  26. Huff, C.D., Witherspoon, D.J., Simonson, T.S., Xing, J., Watkins, W.S., Zhang, Y., Tuohy, T.M., Neklason, D.W., Burt, R.W., Guthery, S.L., Woodward, S.R., Jorde, L.B.: Maximum-likelihood estimation of recent shared ancestry (ERSA). Genome Res. 21, 768–774 (2011)

    CrossRef  Google Scholar 

  27. Li, H., Durbin, R.: Inference of human population history from individual whole-genome sequences. Nature 475, 493–496 (2011)

    CrossRef  Google Scholar 

  28. Li, H., Wiehe, T.: Coalescent tree imbalance and a simple test for selective sweeps based on microsatellite variation. PLoS Comput. Biol. 9, e1003060 (2013)

    CrossRef  Google Scholar 

  29. Liang, L., Zöllner, S., Abecasis, G.R.: GENOME: a rapid coalescent-based whole genome simulator. Bioinformatics 23(12), 1565–1567 (2007)

    CrossRef  Google Scholar 

  30. Marjoram, P., Wall, J.: Fast “coalescent" simulation. BMC Genet. 7(1), 16 (2006)

    CrossRef  Google Scholar 

  31. Mathieson, I., McVean, G.: Demography and the age of rare variants. PLoS Genet. 10(8), e1004528 (2014)

    Google Scholar 

  32. McVean, G.A., Cardin, N.J.: Approximating the coalescent with recombination. Philos. T. Roy. Soc. B. 360(1459), 1387–1393 (2005)

    Google Scholar 

  33. Palamara, P.F., Lencz, T., Darvasi, A., Pe’er, I.: Length distributions of identity by descent reveal fine-scale demographic history. Am. J. Hum. Genet. 91(5), 809–822 (2012)

    CrossRef  Google Scholar 

  34. Palamara, P.F., Pe’er, I.: Inference of historical migration rates via haplotype sharing. Bioinformatics 29(13), 180–188 (2013)

    CrossRef  Google Scholar 

  35. Ralph, P., Coop, G.: The geography of recent genetic ancestry across Europe. PLoS Biol. 11(5), e1001555 (2013)

    Google Scholar 

  36. Schaffner, S.F., Foo, C., Gabriel, S., Reich, D., Daly, M.J., Altshuler, D.: Calibrating a coalescent simulation of human genome sequence variation. Genome Res. 15(11), 1576–1583 (2005)

    CrossRef  Google Scholar 

  37. Simonsen, K.T., Churchill, G.A.: A Markov chain model of coalescence with recombination. Theor. Popul. Biol. 52, 43–59 (1997)

    CrossRef  MATH  Google Scholar 

  38. Su, S.Y., Kasberger, J., Baranzini, S., Byerley, W., Liao, W., Oksenberg, J., Sherr, E., Jorgenson, E.: Detection of identity by descent using next-generation whole genome sequencing data. BMC Bioinformatics 13, 121 (2012)

    CrossRef  Google Scholar 

  39. Tataru, P., Nirody, J.A., Song, Y.S.: diCal-IBD: demography-aware inference of identity-by-descent tracts in unrelated individuals. Bioinformatics 30, 3430–3431 (2014)

    Google Scholar 

  40. Wakeley, J.: Coalescent Theory, an Introduction. Roberts and Company, Greenwood Village, CO (2005)

    Google Scholar 

  41. Wiuf, C., Hein, J.: Recombination as a point process along sequences. Theor. Popul. Biol. 55, 248–259 (1999)

    CrossRef  MATH  Google Scholar 

  42. Yang, S.: IBDdetection. https://github.com/morrisyoung/IBDdetection (2014)

  43. Zhang, Q.S., Browning, B.L., Browning, S.R.: Genome-wide haplotypic testing in a Finnish cohort identifies a novel association with low-density lipoprotein cholesterol. Eur. J. Hum, Genet (2014)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itsik Pe’er .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Yang, S., Carmi, S., Pe’er, I. (2015). Rapidly Registering Identity-by-Descent Across Ancestral Recombination Graphs. In: Przytycka, T. (eds) Research in Computational Molecular Biology. RECOMB 2015. Lecture Notes in Computer Science(), vol 9029. Springer, Cham. https://doi.org/10.1007/978-3-319-16706-0_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16706-0_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16705-3

  • Online ISBN: 978-3-319-16706-0

  • eBook Packages: Computer ScienceComputer Science (R0)