Abstract
The genomes of remotely related individuals occasionally contain long segments that are Identical By Descent (IBD). Sharing of IBD segments has many applications in population and medical genetics, and it is thus desirable to study their properties in simulations. However, no current method provides a direct, efficient means to extract IBD segments from simulated genealogies. Here, we introduce computationally efficient approaches to extract ground-truth IBD segments from a sequence of genealogies, or equivalently, an ancestral recombination graph. Specifically, we use a two-step scheme, where we first identify putative shared segments by comparing the common ancestors of all pairs of individuals at some distance apart. This reduces the search space considerably, and we then proceed by determining the true IBD status of the candidate segments. Under some assumptions and when allowing a limited resolution of segment lengths, our run-time complexity is reduced from \(O(n^3\log n)\) for the naïve algorithm to \(O(n\log n)\), where \(n\) is the number of individuals in the sample.
Keywords
- Identity by Descent
- Ancestral Recombination Graphs
- Population Genetics
- Simulation
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
References
Albrechtsen, A., Moltke, I., Nielsen, R.: Natural selection and the distribution of identity-by-descent in the human genome. Genetics 186(1), 295–308 (2010)
Beaumont, M.A., Zhang, W., Balding, D.J.: Approximate Bayesian computation in population genetics. Genetics 162(4), 2025–2035 (2002)
Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Gonnet, G., Panario, D., Viola, A., (eds.): LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, London (2000)
Berkman, O., Galil, Z., Schieber, B., Vishkin, U.: Highly parallelizable problems. In: Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing, STOC 1989, pp. 309–319. ACM, New York (1989)
Browning, B.L., Browning, S.R.: A fast, powerful method for detecting identity by descent. Am. J. Hum. Genet. 88(2), 173–182 (2011)
Browning, B.L., Browning, S.R.: Detecting identity by descent and estimating genotype error rates in sequence data. Am. J. Hum. Genet. 93(5), 840–851 (2013)
Carmi, S., Palamara, P.F., Vacic, V., Lencz, T., Darvasi, A., Pe’er, I.: The variance of identity-by-descent sharing in the Wright-Fisher model. Genetics 193(3), 911–928 (2013)
Carmi, S., Wilton, P.R., Wakeley, J., Pe’er, I.: A renewal theory approach to IBD sharing. Theor. Popul. Biol. 97, 35–48 (2014)
Chiang, C.W.K., Ralph, P., Novembre, J.: Conflations of short IBD blocks can bias inferred length of IBD (2014)
Conrad, D.F., Jakobsson, M., Coop, G., Wen, X., Wall, J.D., Rosenberg, N.A., Pritchard, J.K.: A worldwide survey of haplotype variation and linkage disequilibrium in the human genome. Nat. Genet. 38, 1251–1260 (2006)
Consortium, T.W.T.C.C.: Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007)
Excoffier, L., Foll, M.: Fastsimcoal: a continuous-time coalescent simulator of genomic diversity under arbitrarily complex evolutionary scenarios. Bioinformatics (2011)
Excoffier, L., Dupanloup, I., Huerta-Sánchez, E., Sousa, V.C., Foll, M.: Robust demographic inference from genomic and SNP data. PLoS Genet. 9(10), e1003905 (2013)
Fearnhead, P., Donnelly, P.: Estimating recombination rates from population genetic data. Genetics 159(3), 1299–1318 (2001)
Griffiths, R.C., Marjoram, P.: Ancestral inference from samples of DNA sequences with recombination. J. Comput. Biol. 3(4), 479–502 (1996)
Gershon, E., Shaked, U.: Applications. In: Gershon, E., Shaked, U. (eds.) Advanced Topics in Control and Estimation of State-multiplicative Noisy Systems. LNCIS, vol. 439, pp. 201–216. Springer, Heidelberg (2013)
Guha, S., Rosenfeld, J.A., Malhotra, A.K., Lee, A.T., Gregersen, P.K., Kane, J.M., Pe’er, I., Darvasi, A., Lencz, T.: Implications for health and disease in the genetic signature of the Ashkenazi Jewish population. Genome Biol. 13, R2 (2012)
Gusev, A., Lowe, J.K., Stoffel, M., Daly, M.J., Altshuler, D., Breslow, J.L., Friedman, J.M., Pe’er, I.: Whole population, genome-wide mapping of hidden relatedness. Genome Res. 19(2), 318–326 (2009)
Gusev, A., Kenny, E.E., Lowe, J.K., Salit, J., Saxena, R., Kathiresan, S., Altshuler, D.M., Friedman, J.M., Breslow, J.L., Pe’er, I.: DASH: A method for identical-by-descent haplotype mapping uncovers association with recent variation. Am. J. Hum. Genet. 88(6), 706–717 (2011)
Gusev, A., Palamara, P.F., Aponte, G., Zhuang, Z., Darvasi, A., Gregersen, P., Pe’er, I.: The architecture of long-range haplotypes shared within and across populations. Mol. Biol. Evol. 29(2), 473–486 (2012)
Harris, K., Nielsen, R.: Inferring demographic history from a spectrum of shared haplotype lengths. PLoS Genet. 9, e1003521 (2013)
Henn, B.M., Cavalli-Sforza, L.L., Feldman, M.W.: The great human expansion. Proc. Natl. Acad. Sci. USA 109, 17758–17764 (2012)
Henn, B.M., Hon, L., Macpherson, J.M., Eriksson, N., Saxonov, S., Pe’er, I., Mountain, J.L.: Cryptic distant relatives are common in both isolated and cosmopolitan genetic samples. PLoS One 7(4), e34267 (2012)
Hudson, R.R.: Gene genealogies and the coalescent process. Oxford surveys in evolutionary biology 7(1), 44 (1990)
Hudson, R.R.: Properties of a neutral allele model with intragenic recombination. Theor. Popul. Biol. 23(2), 183–201 (1983)
Huff, C.D., Witherspoon, D.J., Simonson, T.S., Xing, J., Watkins, W.S., Zhang, Y., Tuohy, T.M., Neklason, D.W., Burt, R.W., Guthery, S.L., Woodward, S.R., Jorde, L.B.: Maximum-likelihood estimation of recent shared ancestry (ERSA). Genome Res. 21, 768–774 (2011)
Li, H., Durbin, R.: Inference of human population history from individual whole-genome sequences. Nature 475, 493–496 (2011)
Li, H., Wiehe, T.: Coalescent tree imbalance and a simple test for selective sweeps based on microsatellite variation. PLoS Comput. Biol. 9, e1003060 (2013)
Liang, L., Zöllner, S., Abecasis, G.R.: GENOME: a rapid coalescent-based whole genome simulator. Bioinformatics 23(12), 1565–1567 (2007)
Marjoram, P., Wall, J.: Fast “coalescent" simulation. BMC Genet. 7(1), 16 (2006)
Mathieson, I., McVean, G.: Demography and the age of rare variants. PLoS Genet. 10(8), e1004528 (2014)
McVean, G.A., Cardin, N.J.: Approximating the coalescent with recombination. Philos. T. Roy. Soc. B. 360(1459), 1387–1393 (2005)
Palamara, P.F., Lencz, T., Darvasi, A., Pe’er, I.: Length distributions of identity by descent reveal fine-scale demographic history. Am. J. Hum. Genet. 91(5), 809–822 (2012)
Palamara, P.F., Pe’er, I.: Inference of historical migration rates via haplotype sharing. Bioinformatics 29(13), 180–188 (2013)
Ralph, P., Coop, G.: The geography of recent genetic ancestry across Europe. PLoS Biol. 11(5), e1001555 (2013)
Schaffner, S.F., Foo, C., Gabriel, S., Reich, D., Daly, M.J., Altshuler, D.: Calibrating a coalescent simulation of human genome sequence variation. Genome Res. 15(11), 1576–1583 (2005)
Simonsen, K.T., Churchill, G.A.: A Markov chain model of coalescence with recombination. Theor. Popul. Biol. 52, 43–59 (1997)
Su, S.Y., Kasberger, J., Baranzini, S., Byerley, W., Liao, W., Oksenberg, J., Sherr, E., Jorgenson, E.: Detection of identity by descent using next-generation whole genome sequencing data. BMC Bioinformatics 13, 121 (2012)
Tataru, P., Nirody, J.A., Song, Y.S.: diCal-IBD: demography-aware inference of identity-by-descent tracts in unrelated individuals. Bioinformatics 30, 3430–3431 (2014)
Wakeley, J.: Coalescent Theory, an Introduction. Roberts and Company, Greenwood Village, CO (2005)
Wiuf, C., Hein, J.: Recombination as a point process along sequences. Theor. Popul. Biol. 55, 248–259 (1999)
Yang, S.: IBDdetection. https://github.com/morrisyoung/IBDdetection (2014)
Zhang, Q.S., Browning, B.L., Browning, S.R.: Genome-wide haplotypic testing in a Finnish cohort identifies a novel association with low-density lipoprotein cholesterol. Eur. J. Hum, Genet (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Yang, S., Carmi, S., Pe’er, I. (2015). Rapidly Registering Identity-by-Descent Across Ancestral Recombination Graphs. In: Przytycka, T. (eds) Research in Computational Molecular Biology. RECOMB 2015. Lecture Notes in Computer Science(), vol 9029. Springer, Cham. https://doi.org/10.1007/978-3-319-16706-0_35
Download citation
DOI: https://doi.org/10.1007/978-3-319-16706-0_35
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-16705-3
Online ISBN: 978-3-319-16706-0
eBook Packages: Computer ScienceComputer Science (R0)