CoMEt: A Statistical Approach to Identify Combinations of Mutually Exclusive Alterations in Cancer

  • Mark D. M. Leiserson
  • Hsin-Ta Wu
  • Fabio Vandin
  • Benjamin J. Raphael
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9029)

Abstract

A major goal of large-scale cancer sequencing studies is to identify the genetic and epigenetic alterations that drive cancer development and to distinguish these events from random passenger mutations that have no consequence for cancer. Identifying driver mutations is a significant challenge due to the mutational heterogeneity of tumors: different combinations of somatic mutations drive different tumors, even those of the same cancer type.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hanahan, D., Weinberg, R.A.: Hallmarks of cancer: the next generation. Cell 144(5), 646–674 (2011)CrossRefGoogle Scholar
  2. 2.
    Yeang, C.H., McCormick, F., Levine, A.: Combinatorial patterns of somatic gene mutations in cancer. The FASEB Journal 22(8), 2605–2622 (2008)CrossRefGoogle Scholar
  3. 3.
    Vandin, F., Upfal, E., Raphael, B.J.: De novo discovery of mutated driver pathways in cancer. Genome Research 22(2), 375–385 (2012)CrossRefGoogle Scholar
  4. 4.
    Leiserson, M.D.M., Blokh, D., Sharan, R., Raphael, B.J.: Simultaneous identification of multiple driver pathways in cancer. PLoS Computational Biology 9(5), e1003054 (2013)CrossRefGoogle Scholar
  5. 5.
    Miller, C.A., Settle, S.H., Sulman, E.P., Aldape, K.D., Milosavljevic, A.: Discovering functional modules by identifying recurrent and mutually exclusive mutational patterns in tumors. BMC Medical Genomics 4(1), 34, January 2011Google Scholar
  6. 6.
    Ciriello, G., Cerami, E., Sander, C., Schultz, N.: Mutual exclusivity analysis identifies oncogenic network modules. Genome Research 22(2), 398–406 (2012)CrossRefGoogle Scholar
  7. 7.
    Szczurek, E., Beerenwinkel, N.: Modeling mutual exclusivity of cancer mutations. PLoS Computational Biology 10(3), e1003503 (2014)CrossRefGoogle Scholar
  8. 8.
    The Cancer Genome Atlas Research Network: Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. The New England journal of medicine 368(22), 2059–2074, May 2013Google Scholar
  9. 9.
    The Cancer Genome Atlas Research Network: Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455(7216), 1061–1068, October 2008Google Scholar
  10. 10.
    Bass, A.J., Thorsson, V., Shmulevich, I., Reynolds, S.M., Miller, M., et al.: Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513(7517), 202–209 (2014)CrossRefGoogle Scholar
  11. 11.
    Network, T.C.G.A.R.: Comprehensive molecular portraits of human breast tumours. Nature 490(7418), 61–70 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Mark D. M. Leiserson
    • 1
  • Hsin-Ta Wu
    • 1
  • Fabio Vandin
    • 1
  • Benjamin J. Raphael
    • 1
  1. 1.Department of Computer Science and Center for Computational Molecular BiologyBrown UniversityProvidenceUSA

Personalised recommendations