CoMEt: A Statistical Approach to Identify Combinations of Mutually Exclusive Alterations in Cancer
Conference paper
First Online:
Abstract
A major goal of large-scale cancer sequencing studies is to identify the genetic and epigenetic alterations that drive cancer development and to distinguish these events from random passenger mutations that have no consequence for cancer. Identifying driver mutations is a significant challenge due to the mutational heterogeneity of tumors: different combinations of somatic mutations drive different tumors, even those of the same cancer type.
Keywords
Acute Myeloid Leukemia Gastric Adenocarcinoma Markov Chain Monte Carlo Algorithm Driver Mutation Mutual Exclusivity
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.Hanahan, D., Weinberg, R.A.: Hallmarks of cancer: the next generation. Cell 144(5), 646–674 (2011)CrossRefGoogle Scholar
- 2.Yeang, C.H., McCormick, F., Levine, A.: Combinatorial patterns of somatic gene mutations in cancer. The FASEB Journal 22(8), 2605–2622 (2008)CrossRefGoogle Scholar
- 3.Vandin, F., Upfal, E., Raphael, B.J.: De novo discovery of mutated driver pathways in cancer. Genome Research 22(2), 375–385 (2012)CrossRefGoogle Scholar
- 4.Leiserson, M.D.M., Blokh, D., Sharan, R., Raphael, B.J.: Simultaneous identification of multiple driver pathways in cancer. PLoS Computational Biology 9(5), e1003054 (2013)CrossRefGoogle Scholar
- 5.Miller, C.A., Settle, S.H., Sulman, E.P., Aldape, K.D., Milosavljevic, A.: Discovering functional modules by identifying recurrent and mutually exclusive mutational patterns in tumors. BMC Medical Genomics 4(1), 34, January 2011Google Scholar
- 6.Ciriello, G., Cerami, E., Sander, C., Schultz, N.: Mutual exclusivity analysis identifies oncogenic network modules. Genome Research 22(2), 398–406 (2012)CrossRefGoogle Scholar
- 7.Szczurek, E., Beerenwinkel, N.: Modeling mutual exclusivity of cancer mutations. PLoS Computational Biology 10(3), e1003503 (2014)CrossRefGoogle Scholar
- 8.The Cancer Genome Atlas Research Network: Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. The New England journal of medicine 368(22), 2059–2074, May 2013Google Scholar
- 9.The Cancer Genome Atlas Research Network: Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455(7216), 1061–1068, October 2008Google Scholar
- 10.Bass, A.J., Thorsson, V., Shmulevich, I., Reynolds, S.M., Miller, M., et al.: Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513(7517), 202–209 (2014)CrossRefGoogle Scholar
- 11.Network, T.C.G.A.R.: Comprehensive molecular portraits of human breast tumours. Nature 490(7418), 61–70 (2012)CrossRefGoogle Scholar
Copyright information
© Springer International Publishing Switzerland 2015