Skip to main content

Exploration of Designability of Proteins Using Graph Features of Contact Maps: Beyond Lattice Models

  • Conference paper
  • First Online:
Research in Computational Molecular Biology (RECOMB 2015)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9029))

  • 2825 Accesses

Abstract

Highly designable structures can be distinguished based on certain geometric graphical features of the interactions confirming the fact that the topology of a protein structure and its residue-residue interaction network are important determinants of its designability. The most designable structures and poorly designable structures obtained for sets of proteins having the same number of residues are compared, and it is shown that the most designable structures predicted by the graph features of the contact diagrams are more densely packed whereas the poorly designable structures are more open loop type structures or structures that are loosely packed. Interestingly enough, it can also be seen that these highly designable structures obtained are also common structural motifs found in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Li, H., Helling, R., Tang, C., Wingreen, N.: Emergence of Preferred Structures in a Simple Model of Protein Folding. Science 273, 666–669 (1996)

    Article  Google Scholar 

  2. Dill, K.A.: Polymer principles and protein folding. Protein Science 8, 1166–1180 (1999)

    Article  Google Scholar 

  3. Cejtin, H., Edler, J., Gottlieb, A., Helling, R., Li, H., Philbin, J., Wingreen, N., Tang, C.: Fast tree search for enumeration of a lattice model of protein folding. Journal of Chemical Physics 116 (2002)

    Google Scholar 

  4. Helling, R., Li, H., Melin, R., Miller, J., Wingreen, N., Zeng, C., Tang, C.: The designability of protein structures. Journal of Molecular Graphics and Modelling 19, 157–167 (2001)

    Article  Google Scholar 

  5. Yang, J.-Y., Yu, Z.-G., Anh, V.: Correlations between designability and various structural characteristics of protein lattice models. Journal of Chemical Physics 126 (2007)

    Google Scholar 

  6. Melin, R., Li, H., Wingreen, N.S., Tang, C.: Designability, thermodynamic stability, and dynamics in protein folding: A lattice model study. Journal of Chemical Physics 110 (1999)

    Google Scholar 

  7. Tang, C.: Simple models of the protein folding problem. Physica A: Statistical Mechanics and its Applications 288, 31–48 (2000)

    Article  Google Scholar 

  8. Miller, J., Zeng, C., Wingreen, N.S., Tang, C.: Emergence of highly designable protein-backbone conformations in an off-lattice model. Proteins 47, 506–512 (2002)

    Article  Google Scholar 

  9. Liang, H.-J., Wang, Y.-Y.: Influence of Monomer Types on the Designability of a Protein-Model Chain. Chinese Physics Letters 19, 1382 (2002)

    Article  Google Scholar 

  10. Wong, P., Frishman, D.: Fold Designability, Distribution, and Disease. PLoS Comput. Biol. 2, e40 (2006). doi:10.1371/journal.pcbi.0020040

    Article  Google Scholar 

  11. Atilgan, A.R., Akan, P., Baysal, C.: Small-World Communication of Residues and Significance for Protein Dynamics. Biophysical Journal 86, 85–91 (2004). doi:10.1016/S0006-3495(04)74086-2

    Article  Google Scholar 

  12. Bagler, G., Sinha, S.: Network properties of protein structures. Physica A: Statistical Mechanics and its Applications 346, 27–33 (2005)

    Article  Google Scholar 

  13. Dokholyan, N.V., Li, L., Ding, F., Shakhnovich, E.I.: Topological determinants of protein folding. Proceedings of the National Academy of Sciences 99, 8637–8641 (2002)

    Article  Google Scholar 

  14. Greene, L.H., Higman, V.A.: Uncovering Network Systems Within Protein Structures. Journal of Molecular Biology 334, 781–791 (2003)

    Article  Google Scholar 

  15. Kloczkowski, A., Jernigan, R.L.: Efficient Method To Count and Generate Compact Protein Lattice Conformations. Macromolecules 30, 6691–6694 (1997). doi:10.1021/ma970662h

    Article  Google Scholar 

  16. Brinda, K.V., Vishveshwara, S.: A Network Representation of Protein Structures: Implications for Protein Stability. Biophysical Journal 89, 4159–4170 (2005). doi:10.1529/biophysj.105.064485

    Article  Google Scholar 

  17. Doncheva, N.T., Assenov, Y., Domingues, F.S., Albrecht, M.: Topological analysis and interactive visualization of biological networks and protein structures. Nat Protocols 7, 670–685 (2012). doi:10.1038/nprot.2012.004

    Article  Google Scholar 

  18. Meyerguz, L., Kleinberg, J., Elber, R.: The network of sequence flow between protein structures. Proceedings of the National Academy of Sciences 104, 11627–11632 (2007)

    Article  Google Scholar 

  19. Milenkovic, T., Filippis, I., Lappe, M., Przulj, N.: Optimized Null Model for Protein Structure Networks. PLoS ONE 4, e5967 (2009). doi:10.1371/journal.pone.0005967

    Article  Google Scholar 

  20. Yan, W., Sun, M., Hu, G., Zhou, J., Zhang, W., Chen, J., Chen, B., Shen, B.: Amino acid contact energy networks impact protein structure and evolution. Journal of Theoretical Biology 355, 95–104 (2014)

    Article  Google Scholar 

  21. Krishnan, A., Zbilut, J.P., Tomita, M., Giuliani, A.: Proteins as networks: Usefulness of graph theory in protein science. Current Protein and Peptide Science 9 (2008)

    Google Scholar 

  22. Sistla, R.K., Brinda, K.V., Vishveshwara, S.: Identification of domains and domain interface residues in multidomain proteins from graph spectral method. Proteins 59, 616–626 (2005)

    Article  Google Scholar 

  23. Jha, A.N., Ananthasuresh, G.K., Vishveshwara, S.: A Search for Energy Minimized Sequences of Proteins. PLoS ONE 4, e6684 (2009). doi:10.1371/journal.pone.0006684

    Article  Google Scholar 

  24. Lai, Z., Su, J., Chen, W., Wang, C.: Uncovering the Properties of Energy-Weighted Conformation Space Networks with a Hydrophobic-Hydrophilic Model. International Journal of Molecular Sciences 10, 1808–1823 (2009)

    Article  Google Scholar 

  25. Amitai, G., Shemesh, A., Sitbon, E., Shklar, M., Netanely, D., Venger, I., Pietrokovski, S.: Network Analysis of Protein Structures Identifies Functional Residues. Journal of Molecular Biology 344, 1135–1146 (2004)

    Article  Google Scholar 

  26. Vishveshwara, S.A.R.A., Brinda, K.V., Kannan, N.: Protein structure: Insights from graph theory. J. Theor. Comput. Chem. 01, 187–211 (2002). doi:10.1142/S0219633602000117

    Article  Google Scholar 

  27. Kannan, N., Selvaraj, S., Gromiha, M.M., Vishveshwara, S.: Clusters in alpha/beta barrel proteins: implications for protein structure, function, and folding: a graph theoretical approach. Proteins 43 (2001)

    Google Scholar 

  28. Patra, S.M., Vishveshwara, S.: Backbone cluster identification in proteins by a graph theoretical method. Biophysical Chemistry 84, 13–25 (2000)

    Article  Google Scholar 

  29. Albert, R., Jeong, H., Barabasi, A.L.: Error and attack tolerance of complex networks. Nature 406, 378–382 (2000). doi:10.1038/35019019

    Article  Google Scholar 

  30. Pabuwal, V., Li, Z.: Comparative analysis of the packing topology of structurally important residues in helical membrane and soluble proteins. Protein Engineering Design and Selection 22, 67–73 (2009)

    Article  Google Scholar 

  31. Shakhnovich, E.I.: Protein design: a perspective from simple tractable models. Folding and Design 3, R45–R58 (1998). doi:10.1016/S1359-0278(98)00021-2

    Article  Google Scholar 

  32. Leelananda, S.P., Towfic, F., Jernigan, R.L., Kloczkowski, A.: Exploration of the relationship between topology and designability of conformations. Journal of Chemical Physics 134 (2011)

    Google Scholar 

  33. Kabsch, W., Sander, C.: Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637 (1983)

    Article  Google Scholar 

  34. Lau, K.F., Dill, K.A.: A lattice statistical mechanics model of the conformational and sequence spaces of proteins. Macromolecules 22, 3986–3997 (1989). doi:10.1021/ma00200a030

    Article  Google Scholar 

  35. Lipman, D.J., Wilbur, W.J.: Modeling Neutral and Selective Evolution of Protein Folding. Proceedings of the Royal Society of London Series B-Biological Sciences 245 (1991)

    Google Scholar 

  36. Vendruscolo, M., Dokholyan, N.V., Paci, E., Karplus, M.: Small-world view of the amino acids that play a key role in protein folding. Phys. Rev. E 65 (2002)

    Google Scholar 

  37. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA Data Mining Software: An Update. SIGKDD Explorations 11 (2009)

    Google Scholar 

  38. England, J.L., Shakhnovich, B.E., Shakhnovich, E.I.: Natural selection of more designable folds: A mechanism for thermophilic adaptation. Proceedings of the National Academy of Sciences of the United States of America 100, 8727–8731 (2003)

    Article  Google Scholar 

  39. Dokholyan, N.V., Li, L., Ding, F., Shakhnovich, E.I.: Topological determinants of protein folding. Proceedings of the National Academy of Sciences 99, 8637–8641 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Kloczkowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Leelananda, S.P., Jernigan, R.L., Kloczkowski, A. (2015). Exploration of Designability of Proteins Using Graph Features of Contact Maps: Beyond Lattice Models. In: Przytycka, T. (eds) Research in Computational Molecular Biology. RECOMB 2015. Lecture Notes in Computer Science(), vol 9029. Springer, Cham. https://doi.org/10.1007/978-3-319-16706-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16706-0_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16705-3

  • Online ISBN: 978-3-319-16706-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics