Skip to main content

Monitoring of NADH Together with Other Tissue Physiological Parameters

  • Chapter
  • 572 Accesses

Abstract

In the previous chapters, it was shown that monitoring of mitochondrial NADH is critical in understanding tissue oxygen balance. Nevertheless, because of the complexity of the physiological and biochemical processes, it is unavoidable and necessary to monitor as many parameters as possible at the tissue level together with mitochondrial NADH. During the past 40 years, we adopted this concept, and various techniques were developed and applied to different models of experimental animals exposed to many types of perturbations. The development of the technology included various sensors or probes that provide information on energy supply and demand in the tissue as described in this chapter. The various probes were organized in a compact multi-probe assembly that was located on the surface of the tissue without any visible damage. The various systems that were developed are presented in chronological order.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mayevsky A, Sonn J, Barbiro-Michaely E (2013) Physiological mapping of brain functions in vivo: surface monitoring of hemodynamic metabolic ionic and electrical activities in real-time. J Neurosci Neuroeng 2:150–177. doi:10.1166/jnsne.2013.1045

    Article  Google Scholar 

  2. Mayevsky A, Chance B (1973) A new long-term method for the measurement of NADH fluorescence in intact rat brain with implanted cannula. Adv Exp Med Biol 37A:239–244

    CAS  PubMed  Google Scholar 

  3. Chance B, Oshino N, Sugano T, Mayevsky A (1973) Basic principles of tissue oxygen determination from mitochondrial signals. Adv Exp Med Biol 37A:277–292

    CAS  PubMed  Google Scholar 

  4. Dirnagl U, Kaplan B, Jacewicz M, Pulsinelli W (1989) Continuous measurement of cerebral cortical blood flow by laser-Doppler flowmetry in a rat stroke model. J CBF Metab 9:589–596. doi:10.1038/jcbfm.1989.84

    CAS  Google Scholar 

  5. Haberl RL, Heizer ML, Marmarou A, Ellis EF (1989) Laser-Doppler assessment of brain microcirculation: effect of systemic alterations. Am J Physiol Heart Circ Physiol 256:H1247–H1254

    CAS  Google Scholar 

  6. Wadhwani KC, Rapoport SI, Shepherd AP, Oberg PA (1990) Blood flow in the central and peripheral nervous systems. In: Shepherd AP, Oberg PA (eds) Laser Doppler blood flowmetry, vol 107. Kluwer, Boston, pp 265–304

    Chapter  Google Scholar 

  7. Mayevsky A (1976) Brain energy metabolism of the conscious rat exposed to various physiological and pathological situations. Brain Res 113:327–338

    Article  CAS  PubMed  Google Scholar 

  8. Mayevsky A, Rogatsky G (2007) Mitochondrial function in vivo evaluated by NADH fluorescence: from animal models to human studies. Am J Physiol Cell Physiol 292:C615–C640

    Article  CAS  PubMed  Google Scholar 

  9. Friedli CM, Sclarsky DS, Mayevsky A (1982) Multiprobe monitoring of ionic, metabolic, and electrical activities in the awake brain. Am J Physiol 243(3):R462–R469

    CAS  PubMed  Google Scholar 

  10. Mayevsky A, Chance B (1982) Intracellular oxidation-reduction state measured in situ by a multichannel fiber-optic surface fluorometer. Science 217:537–540

    Article  CAS  PubMed  Google Scholar 

  11. Mayevsky A (1984) Brain NADH redox state monitored in vivo by fiber optic surface fluorometry. Brain Res Rev 7:49–68

    Article  CAS  Google Scholar 

  12. Mayevsky A (1984) Brain oxygen toxicity. Invited review. In: Bachrach AJ, Matzen MM (eds) Underwater physiology. Undersea Medical Society, Bethesda, MD, pp 69–89

    Google Scholar 

  13. Mayevsky A, Bar-Sagie D (1978) The interrelation between CBF, energy metabolism and ECoG in a new awake brain model. Adv Exp Med Biol 92:761–768

    Google Scholar 

  14. Mayevsky A, Zeuthen T, Chance B (1974) Measurements of extracellular potassium, ECoG and pyridine nucleotide levels during cortical spreading depression in rats. Brain Res 76:347–349

    Article  CAS  PubMed  Google Scholar 

  15. Mayevsky A, Crowe W, Mela L (1980) The interrelation between brain oxidative metabolism and extracellular potassium in the unanesthetized gerbil. Neurol Res 1:213–226

    CAS  PubMed  Google Scholar 

  16. Crowe W, Mayevsky A, Mela L (1977) Application of a solid membrane ion selective electrode to in vivo measurements. Am J Physiol 233:C56–C60

    CAS  PubMed  Google Scholar 

  17. Mayevsky A, Lebourdais S, Chance B (1980) The interrelation between brain PO2 and NADH oxidation–ireduction state in the gerbil. J Neurosci Res 5:173–182

    Article  CAS  PubMed  Google Scholar 

  18. Mayevsky A (1975) The effect of trimethadione on brain energy metabolism and EEG activity of the conscious rat exposed to HPO. J Neurosci Res 1:131–142

    Article  CAS  PubMed  Google Scholar 

  19. Mayevsky A (1983) Multiparameter monitoring of the awake brain under hyperbaric oxygenation. J Appl Physiol 54(3):740–748

    CAS  PubMed  Google Scholar 

  20. Mayevsky A, Frank KH, Nioka S, Kessler M, Chance B (1990) Oxygen supply and brain function in vivo: a multiparametric monitoring approach in the Mongolian gerbil. Adv Exp Med Biol 277:303–313

    CAS  PubMed  Google Scholar 

  21. Mayevsky A, Frank K, Muck M, Nioka S, Kessler M, Chance B (1992) Multiparametric evaluation of brain functions in the Mongolian gerbil in vivo. J Basic Clin Physiol Pharmacol 3:323–342

    Article  CAS  PubMed  Google Scholar 

  22. Mayevsky A, Flamm ES, Pennie W, Chance B (1991) A fiber optic based multiprobes system for intraoperative monitoring of brain functions. SPIE 1431:303–313

    Google Scholar 

  23. Frank KH, Kessler M, Appelbaum K, Dummler W (1989) The Erlangen micro-lightguide spectrophotometer EMPHO I. Phys Med Biol 34:1883–1900. doi:10.1088/0031-9155/34/12/011

    Article  CAS  PubMed  Google Scholar 

  24. Mayevsky A, Meilin S, Rogatsky GG, Zarchin N, Sonn J (1995) Multiparametric monitoring of the awake brain exposed to carbon monoxide. J Appl Physiol 78:1188–1196

    CAS  PubMed  Google Scholar 

  25. Meilin S, Rogatsky GG, Thom SR, Zarchin N, Guggenheimer-Furman E, Mayevsky A (1996) Effects of carbon monoxide exposure on the brain may be mediated by nitric oxide. J Appl Physiol 81:1078–1083

    CAS  PubMed  Google Scholar 

  26. Hansen AJ (1985) Effect of anoxia on ion distribution in the brain. Physiol Rev 65:101–148

    CAS  PubMed  Google Scholar 

  27. Mayevsky A, Nioka S, Wang DJ, Chance B (1997) The functioning gerbil brain in vivo. Correlation between 31P-NMR spectroscopy and the multiparametric monitoring approach. Adv Exp Med Biol 411:41–53

    CAS  PubMed  Google Scholar 

  28. Chance B, Cohen P, Jobsis F, Schoener B (1962) Intracellular oxidation-reduction states in vivo. Science 137:499–508

    Article  CAS  PubMed  Google Scholar 

  29. Yoles E, Zarchin N, Mayevsky A (1991) Effects of age on brain metabolic ionic and electrical responses to anoxia in the newborn dog in vivo. J Basic Clin Physiol Pharmacol 2:297–313

    Article  CAS  PubMed  Google Scholar 

  30. Sonn J, Mayevsky A (2000) Effects of brain oxygenation on metabolic, hemodynamic, ionic and electrical responses to spreading depression in the rat. Brain Res 882(1-2):212–216

    Article  CAS  PubMed  Google Scholar 

  31. Mayevsky A (1992) Cerebral blood flow and brain mitochondrial redox state responses to various perturbations in gerbils. Adv Exp Med Biol 317:707–716

    CAS  PubMed  Google Scholar 

  32. Mayevsky A (1993) Biochemical and physiological activities of the brain as in vivo markers of brain pathology. In: Bernstein EF, Callow AD, Nicolaides AN, Shifrin EG (eds) Cerebral revascularization. Med-Orion, London, pp 51–69

    Google Scholar 

  33. Barbiro-Michaely E, Mayevsky A (2001) Multiparametric monitoring of brain under elevated intracranial pressure in a rat model. J Neurotrauma 18:711–725

    Article  Google Scholar 

  34. Meilin S, Zarchin N, Mayevsky A (1999) Inter-relation between hemodynamic, metabolic, ionic and electrical activities during ischemia and reperfusion in the gerbil brain. Neurol Res 21(7):699–704

    CAS  PubMed  Google Scholar 

  35. Osbakken M, Mayevsky A (1996) Multiparameter monitoring and analysis of in vivo ischemic and hypoxic heart. J Basic Clin Physiol Pharmacol 7:97–113

    Article  CAS  PubMed  Google Scholar 

  36. Rogatsky GG, Sonn J, Kamenir Y, Zarchin N, Mayevsky A (2003) Relationship between intracranial pressure and cortical spreading depression following fluid percussion brain injury in rats. J Neurotrauma 20:1315–1325

    Article  CAS  PubMed  Google Scholar 

  37. Dixon CE, Lyeth BG, Povlishock JT, Findling RL, Hamm RJ, Marmarou A, Young HF, Hayes RL (1987) A fluid percussion model of experimental brain injury in the rat. J Neurosurg 67(1):110–119. doi:10.3171/jns.1987.67.1.0110

    Article  CAS  PubMed  Google Scholar 

  38. McIntosh TK, Vink R, Noble L, Yamakami I, Fernyak S, Soares H, Faden AL (1989) Traumatic brain injury in the rat: characterization of a lateral fluid-percussion model. Neuroscience 28:233–244

    Article  CAS  PubMed  Google Scholar 

  39. Rogatsky GG, Mayevsky A, Zarchin N, Doron A (1996) Continuous multiparametric monitoring of brain activities following fluid-percussion injury in rats: preliminary results. J Basic Clin Physiol Pharmacol 7:23–43

    Article  CAS  PubMed  Google Scholar 

  40. Sullivan HG, Martinez J, Becker DP, Miller JD, Griffith R, Wist AO (1976) Fluid-percussion model of mechanical brain injury in the cat. J Neurosurg 45:521–534

    Article  CAS  PubMed  Google Scholar 

  41. Luger-Hamer M, Barbiro-Michaely E, Sonn J, Mayevsky A (2009) Renal viability evaluated by the multiprobe assembly: a unique tool for the assessment of renal ischemic injury. Nephron Clin Pract 111:c29–c38. doi:10.1159/000178820

    Article  CAS  PubMed  Google Scholar 

  42. Mayevsky A, Doron A, Manor T, Meilin S, Zarchin N, Ouaknine GE (1996) Cortical spreading depression recorded from the human brain using a multiparametric monitoring system. Brain Res 740:268–274

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mayevsky, A. (2015). Monitoring of NADH Together with Other Tissue Physiological Parameters. In: Mitochondrial Function In Vivo Evaluated by NADH Fluorescence. Springer, Cham. https://doi.org/10.1007/978-3-319-16682-7_5

Download citation

Publish with us

Policies and ethics