Skip to main content
  • 612 Accesses

Abstract

In the early days, NADH was measured using the absorption properties of the molecule. The discovery of the fluorescence emitted from the reduced form of NAD+ opened up new options to study mitochondria function under in vitro and in vivo conditions. The effects of various perturbations on the redox state of NADH were tested using different preparations at all organization levels, including NADH in solution, isolated mitochondria, cells, tissue slices, and up to in vivo monitoring of various organs of animals. Very small differences in NADH spectra were found between the various levels of biological organization. Significant correlation between NADH fluorescence measured in vivo and in biochemical assay was found. All those issues are described in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chance B, Williams GR, Holmes WF, Higgins J (1955) Respiratory enzymes in oxidative phosphorylation (V-A mechanism for oxidative phosphorylation). J Biol Chem 217:439–451

    CAS  PubMed  Google Scholar 

  2. Chance B, Williams GR (1955) A method for the localization of sites for oxidative phosphorylation. Nature (Lond) 176(4475):250–254

    CAS  Google Scholar 

  3. Chance B, Williams GR (1955) Respiratory enzymes in oxidative phosphorylation. III: The steady state. J Biol Chem 217:409–427

    CAS  PubMed  Google Scholar 

  4. Chance B, Williams GR (1955) Respiratory enzymes in oxidative phosphorylation. IV: The respiratory chain. J Biol Chem 217:429–438

    CAS  PubMed  Google Scholar 

  5. Harden A, Young WJ (1905) The influence of phosphates on the fermentation of glucose by yeast-juice: preliminary communication. Proc Chem Soc (Lond) 21:189–191

    Google Scholar 

  6. Harden A, Young W (1906) Alcoholic ferment of yeast-juice. Part ΙΙ. Co-ferment of yeast-juice. Proc R Soc B Lond 78:369–375

    Google Scholar 

  7. Warburg O, Christian W, Griese A (1935) Wasserstoff-Ubertragendes Co-ferment, seine Zusamensetzung und Wirkungsweise. Biochem Z 282:157

    CAS  Google Scholar 

  8. Chance B, Cohen P, Jobsis F, Schoener B (1962) Intracellular oxidation-reduction states in vivo. Science 137:499–508

    CAS  PubMed  Google Scholar 

  9. Chance B, Oshino N, Sugano T, Mayevsky A (1973) Basic principles of tissue oxygen determination from mitochondrial signals. Adv Exp Med Biol 37A:277–292

    CAS  PubMed  Google Scholar 

  10. Warburg O (1949) In: Lawson TA (ed) Heavy metal prosthetic groups and enzyme action. Clarendon, Oxford

    Google Scholar 

  11. Keilin D (1966) The history of cell respiration and cytochrome. Cambridge University Press, Cambridge, UK

    Google Scholar 

  12. Keilin D (1925) On cytochrome, a respiratory pigment, common to animals, yeast, and higher plants. Proc R Soc Lond B Biol Sci 98:312–339

    Google Scholar 

  13. Keilin D, Hartree EF (1945) Purification and properties of cytochrome C. Biochem J 39:289

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Lubbers DW (1995) Optical sensors for clinical monitoring. Acta Anaesth Scand Suppl 39(104):37–54

    Google Scholar 

  15. Kohen E, Kohen C, Thorell B (1969) Use of microfluorimetry to study the metabolism of intact cells. Biomed Eng 4:554–565

    CAS  PubMed  Google Scholar 

  16. Mayevsky A, Barbiro-Michaely E (2013) Shedding light on mitochondrial function by real time monitoring of NADH fluorescence: I. Basic methodology and animal studies. J Clin Monit Comput 27:1–34. doi:10.1007/s10877-012-9414-5

    PubMed  Google Scholar 

  17. Theorell H, Bonnichsen R (1951) Studies on liver alcohol dehydrogenase I. Equilibria and initial reaction velocities. Acta Chem Scand 5:1105–1126

    CAS  Google Scholar 

  18. Theorell H, Chance B (1951) Studies on liver alcohol dehydrogenase II. The kinetics of the compound of horse liver alcohol dehydrogenase and reduced diphosphopyridine nucleotide. Acta Chem Scand 5:1127–1144

    CAS  Google Scholar 

  19. Chance B (1951) Enzyme–substrate compounds. Adv Enzymol 12:153–190

    CAS  Google Scholar 

  20. Chance B (1951) Rapid and sensitive spectrophotometry. I. The accelerated and stopped-flow methods for the measurement of the reaction kinetics and spectra of unstable compounds in the visible region of the spectrum. Rev Sci Instrum 22:619–626

    CAS  Google Scholar 

  21. Chance B, Legallias V (1951) Rapid and sensitive spectrophotometry. II. A stopped-flow attachment for a stabilized quartz spectrophotometer. Rev Sci Instrum 22:627–638

    CAS  Google Scholar 

  22. Chance B (1952) Spectra and reaction kinetics of respiratory pigments of homogenized and intact cells. Nature (Lond) 169:215–221

    CAS  Google Scholar 

  23. Chance B (1952) Respiratory pigments of metabolism cells. Fed Proc 11(1)

    Google Scholar 

  24. Chance B, Neilands JB (1952) Studies on lactic dehydrogenase of heart. II. A compound of lactic dehydrogenase and reduced pyridine nucleotide. J Biol Chem 199(1):383–387

    CAS  PubMed  Google Scholar 

  25. Chance B, Castor LN (1952) Some patterns of the respiratory pigments of ascites tumors of mice. Science 116(3008):200–202

    CAS  PubMed  Google Scholar 

  26. Chance B (1953) Dynamics of respiratory pigments of ascites tumor cells. Trans NY Acad Sci 16(2):74–75

    CAS  Google Scholar 

  27. Chance B, Williams GR (1954) Steady-state of reduced pyridine nucleotides in phosphorylating rat liver mitochondria. Am Soc Biol Chem 13 (abstr. 633)

    Google Scholar 

  28. Connelly CM, Chance B (1954) Kinetics of reduced pyridine nucleotides in stimulated frog muscle and nerve. Am Physiol Soc 13(1):29

    Google Scholar 

  29. Chance B (1954) Enzyme mechanisms in living cells. In: McElroy WD, Glass B (eds) The mechanism of enzyme action. Johns Hopkins Press, Baltimore, pp 399–453

    Google Scholar 

  30. Chance B (1954) Spectrophotometry of intracellular respiratory pigments. Science 120:767–775

    CAS  PubMed  Google Scholar 

  31. Chance B, Williams GR (1955) Respiratory enzymes in oxidative phosphorylation. I: Kinetics of oxygen utilization. J Biol Chem 217:383–393

    CAS  PubMed  Google Scholar 

  32. Chance B, Williams GR (1955) Respiratory enzymes in oxidative phosphorylation. II: Difference spectra. J Biol Chem 217:395–407

    CAS  PubMed  Google Scholar 

  33. Chance B, Williams GR (1956) The respiratory chain and oxidative phosphorylation. In: Nord FF (ed) Advances in enzymology, XVIIth edn. Interscience, New York, pp 65–134

    Google Scholar 

  34. Chance B, Hollunger G (1957) Succinate-linked pyridine nucleotide reduction in mitochondria. Fed Proc 1 (abstr. 703)

    Google Scholar 

  35. Chance B, Connelly CM (1957) A method for the estimation of the increase in concentration of adenosine diphosphate in muscle sarcosomes following a contraction. Nature (Lond) 179:1235–1237

    CAS  Google Scholar 

  36. Chance B (1957) Cellular oxygen requirements. Fed Proc 16:671–680

    CAS  PubMed  Google Scholar 

  37. Chance B (1957) Techniques for the assay of the respiratory enzymes. In: Colowick SP, Kaplan NO (eds) Methods in enzymology, vol 4. Academic Press, New York, pp 273–329

    Google Scholar 

  38. Chance B (1959) The response of mitochondria to muscular contraction. Ann NY Acad Sci 81:477–489

    CAS  PubMed  Google Scholar 

  39. Chance B, Perry R, Akerman L, Thorell B (1959) Highly sensitive recording microspectrophotometer. Rev Sci Instrum 30(8):735–741

    CAS  Google Scholar 

  40. Theorell H, Nygaard AP (1954) Kinetics and equilibria in flavoprotein systems. II. The effects of pH, anions and temperature on the dissociation and reassociation of the old yellow enzyme. Acta Chem Scand 8:1649–1658

    CAS  Google Scholar 

  41. Theorell H, Nygaard AP (1954) Kinetics and equilibria in flavoprotein systems. I. A fluorescence recorder and its application to a study of the dissociation of the old yellow enzyme and its resynthesis from riboflavin phosphate and protein. Acta Chem Scand 8:877–888

    CAS  Google Scholar 

  42. Theorell H, Nygaard AP, Bonnichsen R (1954) Kinetics of alcohol dehydrogenases; studies with the aid of a fluorescence recorder. Acta Chem Scand 8:1490–1491

    CAS  Google Scholar 

  43. Boyer PD, Theorell H (1956) The change in reduced diphosphopyridine nucleotide (DPNH) fluorescence upon combination with liver alcohol dehydrogenase (ADH). Acta Chem Scand 10:447–450

    CAS  Google Scholar 

  44. Duysens LNM, Amesz J (1957) Fluorescence spectrophotometry of reduced phosphopyridine nucleotide in intact cells in the near-ultraviolet and visible region. Biochim Biophys Acta 24:19–26

    CAS  PubMed  Google Scholar 

  45. Chance B, Conrad H, Legallias V (1958) Simultaneous fluorimetric and spectrophotometric measurements of reaction kinetics of bound pyridine nucleotide in mitochondria. Paper presented at the The Biophysical Society Meeting, Cambridge, MA, p. 44.

    Google Scholar 

  46. Chance B, Baltscheffsky H (1958) Respiratory enzymes in oxidative phosphorylation. VII: Binding of intramitochondrial reduced pyridine nucleotide). J Biol Chem 233(3):736–739

    CAS  PubMed  Google Scholar 

  47. Klingenberg M, Slenczka W, Ritt E (1959) Vergleichende biochemie der pyridinnucleotid-systeme in mitochondrien verschiedener organe. Biochem Z 332:47–66

    CAS  PubMed  Google Scholar 

  48. Chance B (1959) Quantitative aspects of the control of oxygen utilization. Paper presented at the Ciba Foundation Symposium on Cell Metabolism. J. & A. Churchill Ltd., London, pp 91–129.,

    Google Scholar 

  49. Chance B, Legallias V (1959) Differential microfluorimeter for the localization of reduced pyridine nucleotide in living cells. Rev Sci Instrum 30(8):732–735

    CAS  Google Scholar 

  50. Perry RP, Thorell B, Akerman L, Chance B (1959) Localization and assay of respiratory enzymes in single living cells. Absorbency measurements on the Nebenkern. Nature (Lond) 184:929–931

    CAS  Google Scholar 

  51. Chance B, Thorell B (1959) Fluorescence measurements of mitochondrial pyridine nucleotide in aerobiosis and anaerobiosis. Nature (Lond) 184:931–934

    CAS  Google Scholar 

  52. Thorell B, Chance B (1959) Absorbancy measurements on liver and kidney cells. Nature (Lond) 184:934–935

    CAS  Google Scholar 

  53. Chance B, Jobsis F (1959) Changes in fluorescence in a frog sartorius muscle following a twitch. Nature (Lond) 184:195–196

    CAS  Google Scholar 

  54. Chance B, Thorell B (1959) Localization and kinetics of reduced pyridine nucleotide in living cells by microfluorometry. J Biol Chem 234(11):3044–3050

    CAS  PubMed  Google Scholar 

  55. Chance B, Hollunger G (1960) Energy-linked reduction of mitochondrial pyridine nucleotide. Nature (Lond) 185:666–672

    CAS  Google Scholar 

  56. Chance B, Schoener B, Fergusson JJ (1962) In vivo induced oxidation by adrenocorticotrophic hormone of reduced pyridine nucleotide in the adrenal cortex of hypophysectomized rats. Nature (Lond) 195:776–778

    CAS  Google Scholar 

  57. Chance B, Schoener B (1962) Correlation of oxidation-reduction changes of intracellular reduced pyridine nucleotide and changes in electro-encephalogram of the rat in anoxia. Nature (Lond) 195:956–958

    CAS  Google Scholar 

  58. Chance B, Legallias V, Schoener B (1962) Metabolically linked changes in fluorescence emission spectra of cortex of rat brain, kidney and adrenal gland. Nature (Lond) 195:1073–1075

    CAS  Google Scholar 

  59. Cordeiro PG, Kirschner RE, Hu Q-Y, Chiao JJC, Savage H, Alfano RR, Hoffman LA, Hidalgo DA (1995) Ultraviolet excitation fluorescence spectroscopy: a noninvasive method for the measurement of redox changes in ischemic myocutaneous flaps. Plast Reconstr Surg 96:673–680

    CAS  PubMed  Google Scholar 

  60. Galeotti T, van Rossum GDV, Mayer D, Chance B (1969) Spectrofluorimetric detection of “free” and “bound” forms of NAD(P)H in normal and tumoral cells. In: Quagliariello E (ed) Atti del Seminario di Studi Biologici, IV edn. Adriatica Editrice, Bari, pp 249–270

    Google Scholar 

  61. Theorell H, McKinley-McKee JS (1961) Liver alcohol dehydrogenase. II. Equilibrium constants of binary and ternary complexes of enzyme, coenzyme, and caprate, isobutyramide and imidazole. Acta Chem Scand 15:1811–1833

    CAS  Google Scholar 

  62. Schomacker KT, Frisoli JK, Compton CC, Flotte TJ, Richter JM, Nishioka NS, Deutsch TF (1992) Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential. Lasers Surg Med 12:63–78

    CAS  PubMed  Google Scholar 

  63. Chance B, Schoener B, Oshino R, Itshak F, Nakase Y (1979) Oxidation-reduction ratio studies of mitochondria in freeze- trapped samples. NADH and flavoprotein fluorescence signals. J Biol Chem 254(11):4764–4771

    CAS  PubMed  Google Scholar 

  64. Eng J, Lynch RM, Balaban RS (1989) Nicotinamide adenine dinucleotide fluorescence spectroscopy and imaging of isolated cardiac myocytes. Biophys J 55:621–630

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Chance B (1962) Kinetics of enzyme reactions within single cells. Ann NY Acad Sci 97:431–448

    CAS  PubMed  Google Scholar 

  66. Koretsky AP, Balaban RS (1987) Changes in pyridine nucleotide levels alter oxygen consumption and extra-mitochondrial phosphates in isolated mitochondria: a 31P-NMR and NAD(P)H fluorescence study. Biochim Biophys Acta 893:398–408

    CAS  PubMed  Google Scholar 

  67. Koretsky AP, Katz LA, Balaban RS (1987) Determination of pyridine nucleotide fluorescence from the perfused heart using an internal standard. Am J Physiol 253:H856–H862

    CAS  PubMed  Google Scholar 

  68. Kohen E, Kohen C, Thorell B (1976) Rapid automatic microspectrofluorometric study of intracellular energy metabolism. Exp Cell Res 101:47–54

    CAS  PubMed  Google Scholar 

  69. Galeotti T, van Rossum GDV, Mayer DH, Chance B (1970) On the fluorescence of NAD(P)H in whole-cell preparations of tumours and normal tissues. Eur J Biochem 17:485–496

    CAS  PubMed  Google Scholar 

  70. Terzuolo CA, Chance B, Handelman E, Rossini L, Schmelzer P (1966) Measurements of reduced pyridine nucleotides in a single neuron. Biochim Biophys Acta 126:361–372

    CAS  PubMed  Google Scholar 

  71. Aubert X, Chance B, Keynes RD (1964) Optical studies of biochemical events in the electric organ of Electrophorus. Proc R Soc Lond B 160:211–245

    CAS  Google Scholar 

  72. Chance B (1966) The identification and control of metabolic states. Genootschap ter Bevordering van Natuur-, Genees-, en Heelkunde te Amsterdam, pp 5–37

    Google Scholar 

  73. Jamieson D, Van den Brenk HA (1966) Studies of mechanisms of chemical radiation protection in vivo. III. Changes in fluorescence of intracellular pyridine nucleotides and modification by extracellular hypoxia. Int J Radiat Biol Relat Stud Phys Chem Med 10(3):223–241

    CAS  PubMed  Google Scholar 

  74. Chance B, Williamson JR, Jamieson D, Schoener B (1965) Properties and kinetics of reduced pyridine nucleotide fluorescence of the isolated and in vivo rat heart. Biochem Z 341:357–377

    Google Scholar 

  75. Pappajohn DJ, Penneys R, Chance B (1972) NADH spectrofluorometry of rat skin. J Appl Physiol 33(5):684–687

    CAS  PubMed  Google Scholar 

  76. Chance B, Lieberman M (1978) Intrinsic fluorescence emission from the cornea at low temperatures: evidence of mitochondrial signals and their differing redox states in epithelial and endothelial sides. Exp Eye Res 26:111–117

    CAS  PubMed  Google Scholar 

  77. Perez-Pinzon MA, Mumford PL, Rosenthal M, Sick TJ (1997) Antioxidants, mitochondrial hyperoxidation and elecrical recovery after anoxia in hippocampal slices. Brain Res 754:163–170

    CAS  PubMed  Google Scholar 

  78. Sundt TM, Anderson RE (1975) Reduced nicotinamide adenine dinucleotide fluorescence and cortical blood flow in ischemic and nonischemic squirrel monkey cortex. I. Animal preparation, instrumentation, and validity of model. Stroke 6:270–278

    CAS  PubMed  Google Scholar 

  79. Sundt TM Jr, Anderson RE (1975) Reduced nicotinamide adenine dinucleotide fluorescence and cortical blood flow in ischemic and nonischemic squirrel monkey cortex. 2. Effects of alterations in arterial carbon dioxide tension, blood pressure, and blood volume. Stroke 6(3):279–283

    CAS  PubMed  Google Scholar 

  80. Harbig K, Chance B, Kovach AGB, Reivich M (1976) In vivo measurement of pyridine nucleotide fluorescence from cat brain cortex. J Appl Physiol 41(4):480–488

    CAS  PubMed  Google Scholar 

  81. Mayevsky A (1984) Brain NADH redox state monitored in vivo by fiber optic surface fluorometry. Brain Res Rev 7:49–68

    CAS  Google Scholar 

  82. Avi-Dor Y, Olson JM, Doherty MD, Kaplan NO (1962) Fluorescence of pyridine nucleotides in mitochondria. J Biol Chem 237(7):2377–2383

    CAS  Google Scholar 

  83. Chance B, Schoener B, Krejci K, Russmann W, Wesemann W, Schnitger H, Bucher T (1965) Kinetics of fluorescence and metabolite changes in rat liver during a cycle of ischemia. Biochem Z 341:325–333

    CAS  Google Scholar 

  84. Chance B, Jamieson D, Williamson JR (1966) Control of the oxidation-reduction state of reduced pyridine nucleotides in vivo and in vitro by hyperbaric oxygen. Paper presented at the Third International Conference on Hyperbaric Medicine, National Academy of Sciences, Washington, DC

    Google Scholar 

  85. Jobsis FF, O’Connor M, Vitale A, Vreman H (1971) Intracellular redox changes in functioning cerebral cortex. I. Metabolic effects of epileptiform activity. J Neurophysiol 3465:735–749

    Google Scholar 

  86. Shimazaki J, Tornheim K, Laing RA (1989) Correlation of redox fluorometry and analytical measurements of pyridine nucleotide. Invest Ophthalmol Vis Sci 30(10):2274–2278

    CAS  PubMed  Google Scholar 

  87. Welsh FA, O’Connor MJ, Langfitt TW (1977) Regions of cerebral ischemia located by pyridine nucleotide fluorescence. Science 198:951–953

    CAS  PubMed  Google Scholar 

  88. Toth A, Tischler ME, Pal M, Koller A, Johnson PC (1992) A multipurpose instrument for quantitative intravital microscopy. J Appl Physiol 73(1):296–306

    CAS  PubMed  Google Scholar 

  89. Toth A, Pal M, Tischler ME, Johnson PC (1996) Are there oxygen-deficient regions in resting skeletal muscle? Am J Physiol 270(6):H1933–H1939

    CAS  PubMed  Google Scholar 

  90. Uppal A, Ghosh N, Datta A, Gupta PK (2005) Fluorimetric estimation of the concentration of NADH from human blood samples. Biotechnol Appl Biochem 41(pt 1):43–47

    CAS  PubMed  Google Scholar 

  91. Anderson-Engels S, Wilson BC (1992) In vivo fluorescence in clinical oncology: fundamental and practical issues. J Cell Pharmacol 3:66–79

    Google Scholar 

  92. Estabrook RW (1962) Fluorometric measurement of reduced pyridine nucleotide in cellular and subcellular particles. Anal Biochem 4:231–245

    CAS  PubMed  Google Scholar 

  93. Jobsis FF, Stainsby WN (1968) Oxidation of NADH during contractions of circulated mammalian skeletal muscle. Respir Physiol 4:292–300

    CAS  PubMed  Google Scholar 

  94. Jobsis FF, Duffield JC (1967) Oxidative and glycolytic recovery metabolism in muscle. Fluorometric observations on their relative contributions. J Gen Physiol 50:1009–1047

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Chapman JB (1972) Fluorometric studies of oxidative metabolism in isolated papillary muscle of the rabbit. J Gen Physiol 59:135–154

    CAS  PubMed Central  PubMed  Google Scholar 

  96. O’Connor MJ, Welsh F, Komarnicky L, Davis L, Stevens J, Lewis D, Herman C (1977) Origin of labile NADH tissue fluorescence. In: Colloquium on Oxygen and Physiological Function. Professional Information Library, Dallas, pp 90–99

    Google Scholar 

  97. Nuutinen EM (1984) Subcellular origin of the surface fluorescence of reduced nicotinamide nucleotides in the isolated perfused rat heart. Basic Res Cardiol 79:49–58

    CAS  PubMed  Google Scholar 

  98. Mayevsky A (1976) Brain energy metabolism of the conscious rat exposed to various physiological and pathological situations. Brain Res 113:327–338

    CAS  PubMed  Google Scholar 

  99. Mayevsky A (1977) Brain energy metabolism of the conscious rat exposed to ischemic conditions. In: Lewis DH (ed) Recent advances in basic microcirculatory research. Bibliotheca Anatomica, Vol. 15. Karger, Basel, pp 361–364

    Google Scholar 

  100. Mayevsky A, Chance B (1976) The effect of decapitation on the oxidation-reduction state of NADH and ECoG in the brain of the awake rat. Adv Exp Med Biol 75:307–312

    CAS  PubMed  Google Scholar 

  101. Zarchin N, Mayevsky A (1981) The effects of age on the metabolic and electrical responses to decapitation in the awake and anesthetized rat brain. Mech Ageing Dev 16:285–294

    CAS  PubMed  Google Scholar 

  102. Chance B, Schoener B, Schindler F (1963) The intracellular oxidation-reduction state. In: Dickens F, Neil E (eds) Proceedings of a symposium held under the joint auspices of the International Union of Biochemistry and the International Union of Physiological Sciences. Pergamon, London, pp 367–392

    Google Scholar 

  103. Lowry OH, Passonneau JV, Hasselberger FX, Schulz DW (1964) Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain. J Biol Chem 239:18–30

    CAS  PubMed  Google Scholar 

  104. Mayevsky A (1992) Interrelation between intracellular redox state and ion homeostasis in the brain in vivo. In: Frank K, Kessler M (eds) Quantitative spectroscopy in tissues. Verlasgruppe, Frankfurt am Main, pp 155–168

    Google Scholar 

  105. Coremans JMCC, Ince C, Bruining HA, Puppels GJ (1997) (Semi-)quantitative analysis of reduced nicotinamide adenine dinucleotide fluorescence images of blood-perfused rat heart. Biophys J 72:1849–1860

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Jobsis FF, O’Connor MJ, Rosenthal M, Van Buren JM (1971) Fluorometric monitoring of metabolic activity in the intact cerebral cortex. In: Somjen GG (ed) Excerpta Medica International Congress series, No. 253. Paris, France, 20–22, pp 18–26

    Google Scholar 

  107. Mayevsky A, Chance B (1973) A new long-term method for the measurement of NADH fluorescence in intact rat brain with implanted cannula. Adv Exp Med Biol 37A:239–244

    CAS  PubMed  Google Scholar 

  108. Mayevsky A, Chance B (1982) Intracellular oxidation-reduction state measured in situ by a multicannel fiber-optic surface fluorometer. Science 217:537–540

    CAS  PubMed  Google Scholar 

  109. Harrison M, Sick TJ, Rosenthal M (1985) Mitochondrial redox responses to cerebral ischaemia produced by four-vessel occlusion in the rat. Neurol Res 7:142–148

    CAS  PubMed  Google Scholar 

  110. Hempel FG, Jobsis FF (1979) Comparison of cerebral NADH and cytochrome aa3 redox shifts during anoxia or hemorrhagic hypotension. Life Sci 25:1145–1152

    CAS  PubMed  Google Scholar 

  111. Hersey SJ, Jobsis FF (1969) Redox changes in the respiratory chain related to acid secretion by the intact gastric mucosa. Biochem Biophys Res Commun 36(2):243–250

    CAS  PubMed  Google Scholar 

  112. Jobsis FF (1964) Basic processes in cellular respiration. In: Fenn R (ed) Handbook of physiology: respiration, vol 2, 1st edn. American Physiological Society, Bethesda, MD, pp 63–124

    Google Scholar 

  113. Jobsis FF, Duffield JC (1967) Force, shortening, and work in muscular contraction: relative contributions to overall energy utilization. Science 156:1388–1392

    CAS  PubMed  Google Scholar 

  114. Jobsis FF (1969) Activity linked redox changes in the respiratory chain of the intact gastric mucosa. Fed Proc 28:718–718

    Google Scholar 

  115. Jobsis FF (1972) Oxidative metabolism at low pO2. Fed Proc 31:1404–1413

    CAS  PubMed  Google Scholar 

  116. Jobsis FF (1974) Intracellular metabolism of oxygen. Am Rev Respir Dis 110:58–63

    CAS  PubMed  Google Scholar 

  117. Jobsis FF (1967) Mechanical activity of striated muscle. Symp Biol Hung 8:151–205

    Google Scholar 

  118. Jobsis FF, LaManna JC (1978) Kinetic aspects of intracellular redox reactions. In vivo effects during and after hypoxia and ischemia. In: Robin E (ed) Extrapulmonary manifestations of respiratory disease. Dekker, New York, pp 63–106

    Google Scholar 

  119. LaManna JC (1975) In vivo control of oxidative metabolism monitored in intact cerebral cortex by optical techniques. Duke University, Durham

    Google Scholar 

  120. LaManna JC, Rosenthal M (1975) Effect of ouabain and phenobarbital on oxidative metabolic activity associated with spreading cortical depression in cats. Brain Res 88:145–149

    CAS  PubMed  Google Scholar 

  121. LaManna JC, Sylvia AL, Martel D, Rosenthal M (1976) Fluorometric monitoring of the effects of adrenergic agents on oxidative metabolism in intact cerebral cortex. Neuropharmacology 15:17–24

    CAS  PubMed  Google Scholar 

  122. LaManna JC, Lothman E, Rosenthal M, Somjen G, Younts W (1977) Phenytoin, electric, ionic and metabolic responses in cortex and spinal cord. Epilepsia 18(3):317–329

    CAS  PubMed  Google Scholar 

  123. LaManna JC, Younts BW Jr, Rosenthal M (1977) The cerebral oxidative metabolic response to acute ethanol administration in rats and cats. Neuropharmacology 16:283–288

    CAS  PubMed  Google Scholar 

  124. LaManna JC, Cordingley G, Rosenthal M (1977) Phenobarbital actions in vivo: effects on extra cellular potassium activity and oxidative metabolism in cat cerebral cortex. J Pharmacol Exp Ther 200(3):560–569

    CAS  PubMed  Google Scholar 

  125. LaManna JC, Rosenthal M, Novack R, Moffett DF, Jobsis FF (1980) Temperature coefficients for the oxidative metabolic responses to electrical stimulation in cerebral cortex. J Neurochem 34(1):203–209

    CAS  PubMed  Google Scholar 

  126. LaManna JC, Peretsman SJ, Light AI, Rosenthal M (1981) Oxygen sufficiency in the “working” brain. In: Kovach AGB, Dora E, Silver IA (eds) Advances in physiological sciences:, Oxygen transport to tissue. Akademiai Kiado, Budapest, pp 95–96

    Google Scholar 

  127. LaManna JC, Harik SI, Light AI, Rosenthal M (1981) Norepinephrine depletion alters cerebral oxidative metabolism in the ‘active’ state. Brain Res 204:87–101

    CAS  PubMed  Google Scholar 

  128. LaManna JC, Light AI, Peretsman SJ, Rosenthal M (1984) Oxygen insufficiency during hypoxic hypoxia in rat brain cortex. Brain Res 293:313–318

    CAS  PubMed  Google Scholar 

  129. Lothman E, LaManna J, Cordingley G, Rosenthal M, Somjen G (1975) Responses of electrical potential potassium levels, and oxidative metabolic activity of the cerebral neocortex of cats. Brain Res 88:15–36

    CAS  PubMed  Google Scholar 

  130. Mandel LJ, Riddle TG, LaManna JC (1976) A rapid scanning spectrophotometer and fluorometer for in vivo monitoring of steady state and kinetic optical properties of respiratory enzymes. In: Jobsis FF (ed) Oxygen and physiological function. Profession Information Library, Dallas, pp 79–89

    Google Scholar 

  131. Mandel LJ (1982) Use of noninvasive fluorometry and spectrophotometry to study epithelial metabolism and transport. Fed Proc 41:36–41

    CAS  PubMed  Google Scholar 

  132. Mills E, Jobsis FF (1972) Mitochondrial respiratory chain of carotid body and chemoreceptor response to changes in oxygen tension. J Neurophysiol 35:405–428

    CAS  PubMed  Google Scholar 

  133. Novack RL, LaManna JC, Rosenthal M (1982) Ethanol and acetaldehyde alter brain mitochondrial redox responses to direct cortical stimulation in vivo. Neuropharmacology 21:1051–1058

    CAS  PubMed  Google Scholar 

  134. Rosenthal M, Jobsis FF (1971) Intracellular redox changes in functioning cerebral cortex. II. Effects of direct cortical stimulation. J Neurophysiol 34:750–762

    CAS  PubMed  Google Scholar 

  135. Rosenthal M, Somjen G (1973) Spreading depression, sustained potential shifts, and metabolic activity of cerebral cortex of cats. J Neurophysiol 36:739–749

    CAS  PubMed  Google Scholar 

  136. Rosenthal M, LaManna JC (1975) Effect of ouabain and phenobarbital on the kinetics of cortical metabolic transients associated with evoked potentials. J Neurochem 24:111–116

    CAS  PubMed  Google Scholar 

  137. Rosenthal M, Martel D, LaManna JC, Jobsis FF (1976) In situ studies of oxidative energy metabolism during transient cortical ischemia in cats. Exp Neurol 50:477–494

    CAS  PubMed  Google Scholar 

  138. Rosenthal M, Martel DL, LaManna JC (1976) Effects of incomplete and complete ischemia on mitochondrial functioning measured in intact cerebral cortex of cats. Exp Neurol 52:433–446

    CAS  Google Scholar 

  139. Rosenthal M, LaManna J (1977) Oxidative metabolism and electrophysiological activity in intact central nervous system. Paper presented at the Oxygen and Physiological Function, Dallas, TX

    Google Scholar 

  140. Rosenthal M, Martel DL (1979) Ischemia-induced alterations in oxidative “recovery” metabolism after spreading cortical depression in situ. Exp Neurol 63:367–378

    CAS  PubMed  Google Scholar 

  141. Sick TJ, Rosenthal M (1989) Indo-1 measurements of intracellular free calcium in the hippocampal slice: complications of labile NADH fluorescence. J Neurosci Methods 28:125–132

    CAS  PubMed  Google Scholar 

  142. Somjen GG, Rosenthal M, Cordingley G, LaManna J, Lothman E (1976) Potassium, neuroglia, and oxidative metabolism in central gray matter. Fed Proc 35:1266–1271

    CAS  PubMed  Google Scholar 

  143. Sylvia AL, Rosenthal M (1979) Effects of age on brain oxidative metabolism in vivo. Brain Res 165:235–248

    CAS  PubMed  Google Scholar 

  144. Duckrow RB, LaManna J, Rosenthal M (1981) Disparate recovery of resting and stimulated oxidative metabolism following transient ischemia. Stroke 12(5):677–686

    CAS  PubMed  Google Scholar 

  145. Mills SA, Jobsis FF, Seaber AV (1977) A fluorometric study of oxidative metabolism in the in vivo canine heart during acute ischemia and hypoxia. Ann Surg 186:193–200

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Jobsis F, Legallias V, O’Connor M (1966) A regulated differential fluorometer for the assay of oxidative metabolism in intact tissues. IEEE Trans Biomed Eng BME-13:93–99

    Google Scholar 

  147. O’Connor MJ, Herman CJ, Rosenthal M, Jobsis F (1972) Intracellular redox changes preceding onset of epileptiform activity in intact cat hippocampus. J Neurophysiol 35:471–483

    PubMed  Google Scholar 

  148. O’Connor MJ, Lewis DV, Herman CJ (1973) Effects of potassium on oxidative metabolism and seizures. Electroencephalogr Clin Neurophysiol 35:205–208

    PubMed  Google Scholar 

  149. Lindros KO, Oshino N, Parrilla R, Williamson JR (1974) Characteristics of ethanol and acetaldehyde oxidation on flavin and pyridine nucleotide fluorescence changes in perfused rat liver. J Biol Chem 249(24):7956–7963

    CAS  PubMed  Google Scholar 

  150. Rich TL, Williamson JR (1978) Correlation of isometric tension and redox state in perfused rabbit interventricular septum. Front Biol Energet 2:1523–1532

    CAS  Google Scholar 

  151. Scholz R, Thurman RG, Williamson JR, Chance B, Bucher T (1969) Flavin and pyridine nucleotide oxidation-reduction changes in perfused rat liver. I. Anoxia and subcellular localization of fluorescent flavoproteins. J Biol Chem 244(9):2317–2324

    CAS  PubMed  Google Scholar 

  152. Steenbergen C, Deleeuw G, Barlow C, Chance B, Williamson JR (1977) Heterogeneity of the hypoxic state in perfused rat heart. Circ Res 41:606–615

    CAS  PubMed  Google Scholar 

  153. Steenbergen C, Williamson JR, DeLeeuw GJ (1978) Nature of flow and oxygen border zones in hypoxic and ischemic myocardium. In: Dutton PL, Leigh JS, Scarpa A (eds) Frontiers of biological energetics. Academic Press, New York, pp 1541–1550

    Google Scholar 

  154. Williamson JR, Safer B, LaNoue KF, Smith CM, Walajtys E (1973) Mitochondrial-cytosolic interactions in cardiac tissue: role of the malate-aspartate cycle in the removal of glycolytic NADH from the cytosol. Symp Soc Exp Biol 27:241–281

    CAS  PubMed  Google Scholar 

  155. Williamson JR, Davis KN, Medina-Ramirez G (1982) Quantitative analysis of heterogenous NADH fluorescence in perfused rat hearts during hypoxia and ischemia. J Mol Cell Cardiol 14(suppl 3):29–35

    CAS  PubMed  Google Scholar 

  156. Williamson JR, Jakob A, Refino C (1983) Control of the removal of reducing equivalents from the cytosol in perfused rat liver. J Biol Chem 246:7632–7641

    Google Scholar 

  157. Steenbergen C, Williamson JR (1980) Heterogeneous coronary perfusion during myocardial hypoxia. Adv Myocardiol 2:271–284

    CAS  PubMed  Google Scholar 

  158. Williamson JR, Schaffer SW, Ford C, Safer B (1976) Contribution of tissue acidosis to ischemic injury in the perfused rat heart. Circulation 53(suppl I):13–14

    Google Scholar 

  159. Williamson JR, Jamieson D (1966) Metabolic effect of epinephrine in the perfused rat heart. I. Comparison of intracellular redox states, tissue pO2, and force of contraction. Mol Pharmacol 2:191–205

    CAS  PubMed  Google Scholar 

  160. Williamson JR, Steenbergen C, Deleeuw G, Barlow C (1976) Control of energy production in cardiac muscle: effects of ischemia in acidosis. Recent Adv Stud Cardiac Struct Metab 11:521–531

    CAS  PubMed  Google Scholar 

  161. Williamson JR (1965) Glycolytic control mechanisms. I. Inhibition of glycolysis by acetate and pyruvate in the isolated, perfused rat heart. J Biol Chem 240:2308–2321

    CAS  PubMed  Google Scholar 

  162. Dora E, Kovach AGB (1978) Factors influencing the correction factor used to eliminate the apparent NADH fluorescence changes caused by alterations in cerebrocortical blood content. Adv Exp Med Biol 92:113–118

    Google Scholar 

  163. Dora E, Chance B, Kovach AGB, Silver IA (1975) Carbon monoxide-induced localized toxic anoxia in the rat brain cortex. J Appl Physiol 39(5):875–878

    CAS  PubMed  Google Scholar 

  164. Dora E (1984) Effect of lactate and pyruvate on cerebrocortical microcirculation and NAD/NADH redox state. Adv Exp Med Biol 180:159–167

    CAS  PubMed  Google Scholar 

  165. Dora E (1984) A simple cranial window technique for optical monitoring of cerebrocortical microcirculation and NAD/NADH redox state. Effect of mitochondrial electron transport inhibitors and anoxic anoxia. J Neurochem 42:101–108

    CAS  PubMed  Google Scholar 

  166. Dora E (1985) Effect of “flow anoxia” and “non flow anoxia” on the NAD/NADH redox state of the intact brain cortex of the cat. Pflugers Arch Eur J Physiol 405:148–154

    CAS  Google Scholar 

  167. Dora E (1985) Further studies on reflectometric monitoring of cerebrocortical microcirculation. Importance of lactate anions in coupling between cerebral blood flow and metabolism. Acta Physiol Hung 66(2):199–211

    CAS  PubMed  Google Scholar 

  168. Dora E (1984) NAD pools in the brain cortex effect of reversible anoxic-anoxia and irreversible anoxic-ischemia. Adv Exp Med Biol 180:131–139

    CAS  PubMed  Google Scholar 

  169. Dora E (1985) Effect of adenosine and its stable analogue 2-chloradenosine on cerebrocortical microcirculation and NAD/NADH redox state. Pflugers Arch Eur J Physiol 404:208–213

    CAS  Google Scholar 

  170. Dora E, Gyulai L, Kovach AGB (1984) Determinants of brain activation-induced cortical NAD/NADH responses in vivo. Brain Res 299:61–72

    CAS  PubMed  Google Scholar 

  171. Dora E, Koller A, Kovach AGB (1984) Effect of topical adenosine deaminase treatment on the functional hyperemic and hypoxic responses of cerebrocortical microcirculation. J CBF Metab 4:447–457

    CAS  Google Scholar 

  172. Dora E, Kovach AGB (1978) Effect of proxyphylline and benzopyrones on the cerebrocortial NAD/NADH redox state and reflectance in haemorrhagic shock. Drug Res 28(I):787–790

    CAS  Google Scholar 

  173. Dora E, Kovach AGB (1979) Reactivity of the cerebrocortical vasculature and energy metabolism to direct cortical stimulation in haemorrhagic shock. Acta Physiol Acad Sci Hung 54(4):347–361

    CAS  PubMed  Google Scholar 

  174. Dora E, Kovach AGB (1981) NAD-NADH and vascular volume oscillations in the cat brain cortex. In: Kovach AGB, Dora E, Kessler M, Silver IA (eds) Oxygen transport to tissue. Pergamon, Budapest, pp 225–231

    Google Scholar 

  175. Dora E, Kovach AGB (1982) Effect of acute arterial hypo- and hypertension on cerebrocortical NAD/NADH redox state and vascular volume. J CBF Metab 2:209–219

    CAS  Google Scholar 

  176. Dora E, Kovach AGB (1983) Effect of topically administered epinephrine, norepinephrine, and acetylcholine on cerebrocortical circulation and the NAD/NADH redox state. J CBF Metab 3:161–169

    CAS  Google Scholar 

  177. Dora E, Kovach AGB (1984) Effect of the adrenergic beta receptor blocker propranolol on the dilatation of cerebrocortical vessels evoked by arterial hypoxia. Acta Physiol Hung 63(1):35–41

    CAS  PubMed  Google Scholar 

  178. Dora E, Kovach AGB (1987) Role of hypoxia and acetylcholine in the regulation of cerebral blood flow. Adv Exp Med Biol 215:237–248

    CAS  PubMed  Google Scholar 

  179. Dora E, Kovach AGB, Greenberg JH, Tanaka K, Gonatas NH, Reivich M (1988) Microcirculation and metabolism in reversible and irreversible cerebral ischemia. In: Somjen G (ed) Mechanism of cerebral hypoxia and stroke, 35th edn. Plenum, New York and London, pp 119–133

    Google Scholar 

  180. Dora E, Olaffson K, Chance B, Kovach AGB (1976) Cortical NADH, pO2, electrical activity and arterial blood pressure oscillations in hypoxaemia. Adv Exp Med Biol 75:299–305

    CAS  PubMed  Google Scholar 

  181. Dora E, Tanaka K, Greenberg JH, Gonatas NH, Reivich M (1986) Kinetics of microcirculatory, NAD/NADH, and electrocorticographic changes in cat brain cortex during ischemia and recirculation. Ann Neurol 19:536–544

    CAS  PubMed  Google Scholar 

  182. Dora E, Satori O, Szabo L, Kovach AGB (1980) Shock-induced cytoplasmic NADH fluorescence changes in the living cat brain cortex: effect of dexamethasone. Acta Physiol Acad Sci Hung 56(2):219–233

    CAS  PubMed  Google Scholar 

  183. Dora E, Zeuthen T, Silver IA, Kovach AGB (1979) Effect of arterial hypoxia on the cerebrocortical redox state, vascular volume, oxygen tension, electrical activity and potassium ion concentration. Acta Physiol Acad Sci Hung 54(4):319–331

    CAS  PubMed  Google Scholar 

  184. Dora E, Zeuten T, Silver I, Chance B, Kovach AGB (1977) Regulation of cerebrocortical blood flow during the early phase of arterial anoxia. In: 9th European Conference on Microcirculation, Antwerp. Bibliotheca Anatomica, vol. 15. Karger, Basel, pp 365–366

    Google Scholar 

  185. Gyulai L, Dora E, Kovach AGB (1982) NAD/NADH: redox state changes on cat brain cortex during stimulation and hypercapnia. Am J Physiol 243(4):H619–H627

    CAS  PubMed  Google Scholar 

  186. Gyulai L, Chance B, Ligeti L, McDonald G, Cone J (1988) Correlated in vivo 31P-NMR and NADH fluorometric studies on gerbil brain in graded hypoxia and hyperoxia. Am J Physiol 254:C699–C708

    CAS  PubMed  Google Scholar 

  187. Kovach AGB, Eke A, Dora E, Gyulai L (1976) Correlation between the redox state, electrical activity and blood flow in cat brain cortex during hemorrhagic shock. Adv Exp Med Biol 75:289–297

    CAS  PubMed  Google Scholar 

  188. Kovach AGB, Dora E, Hamar J, Eke A, Szabo L (1978) Transient metabolic and vascular volume changes following rapid blood pressure alterations which precede the autoregulatory vasodilation of cerebrocortical vessels. Adv Exp Med Biol 92:705–711

    Google Scholar 

  189. Kovach AGB, Dora E, Gyulai L (1977) Effects of microcirculation on microfluorometric measurements. In: Jobsis FF (ed) Oxygen and physiologic function. Professional Information Library, Dallas, TX, pp 111–123

    Google Scholar 

  190. Kovach AGB, Dora E, Gyulai L, Eke A (1977) Cerebrovascular and metabolic reactions at the CBF autoregulatory level evoked by electrical stimulation of the cat brain cortex. Krager, Basel, pp 371–374

    Google Scholar 

  191. Kovach AGB (1977) Cerebral hemodynamic and metabolic alterations in hypovolemic shock. In: Reivich M, Coburn R, Lahiri S, Chance B (eds) Tissue hypoxia and ischemia. Plenum, New York and London, pp 343–370

    Google Scholar 

  192. Kovach AGB, Dora E (1979) Intracellular oxygen tension and energy metabolism in the cat brain cortex during haemorrhagic shock. Acta Physiol Acad Sci Hung 54(4):333–346

    CAS  PubMed  Google Scholar 

  193. Kovach AGB, Dora E (1981) Redox state and vascular volume changes in the cat brain cortex during CBF autoregulation. In: Kovach AGB, Dora E, Kessler M, Silver IA (eds) Advances in physiological science, vol 25. Pergamon, Budapest, pp 145–154

    Google Scholar 

  194. Kovach AGB, Dora E, Gyulai L (1984) Relationship between steady redox state and brain activation- induced NAD/NADH redox responses. Adv Exp Med Biol 169:81–100

    CAS  PubMed  Google Scholar 

  195. Kovach AGB, Dora E (1984) Contribution of adenosine to the regulation of cerebral blood flow: the role of calcium ions in the adenosine-induced cerebrocortical vasodilatation. Adv Exp Med Biol 169:315–325

    CAS  PubMed  Google Scholar 

  196. Zeuthen T, Dora E, Silver IA, Chance B, Kovach AGB (1979) Mechanism of the cerebrocortical vasodilatation during anoxia. Acta Physiol Acad Sci Hung 54(4):305–318

    CAS  PubMed  Google Scholar 

  197. Snow TR, Rubanyi G, Dora T, Dora E, Kovach AGB (1980) Effect of perfusate Ca2+ on the relation between metabolism and mechanical performance in the rat heart. Can J Physiol Pharmacol 58:570–573

    CAS  PubMed  Google Scholar 

  198. Ligeti L, Kovach AGB, Mayevsky A, Ruttner Z, McLaughlin AC (1997) Can the indo-1 fluorescence approach measure brain intracellular calcium in vivo? A multiparametric study of cerebrocortical anoxia and ischemia. Cell Calcium 21(2):115–124

    CAS  PubMed  Google Scholar 

  199. Dora E (1983) Glycolysis and epilepsy-induced changes in cerebrocortical NAD/NADH redox state. J Neurochem 41:1774–1777

    CAS  PubMed  Google Scholar 

  200. Dora E (1986) Effect of theophylline treatment on the functional hyperaemic and hypoxic responses of cerebrocortical microciruclation. Acta Physiol Hung 68(2):183–197

    CAS  PubMed  Google Scholar 

  201. Gyulai L, Dora E, Kovach AGB, Korom G (1981) Opposite changes in the redox state of the brain cortex depending on the length and strength of direct cortical stimulation. In: Kovach AGB, Dora E, Kessler M, Silver IA (eds) Advances in physiological sciences, vol 25. Pergamon, Budapest, pp 245–247

    Google Scholar 

  202. Kovach AGB, Dora E, Szedlacsek S, Koller A (1983) Effect of the organic calcium antagonist D-600 on cerebrocortical vascular and redox responses evoked by adenosine, anoxia and epilepsy. J CBF Metab 3:51–61

    CAS  Google Scholar 

  203. Gyulai L, Kovach AGB (1982) Cerebrocortical microvessel reactions during hypercapnia and direct electrical activation of cat brain cortex. Am J Physiol 254:C699–C708

    Google Scholar 

  204. Dora E, Kovach AGB (1981) Metabolic and vascular volume oscillations in the cat brain cortex. Acta Physiol Acad Sci Hung 57(3):261–275

    CAS  PubMed  Google Scholar 

  205. Rubanyi G, Toth A, Kovach AG (1982) Distinct effect of contraction and ion transport on NADH fluorescence and lactate production in uterine smooth muscle. Acta Physiol Acad Sci Hung 59(1):45–58

    CAS  PubMed  Google Scholar 

  206. Barlow CH, Chance B (1976) Ischemic areas in perfused rat hearts: measurement by NADH fluorescence photography. Science 193:909–910

    CAS  PubMed  Google Scholar 

  207. Barlow CH, Harken AH, Chance B (1977) Evaluation of cardiac ischemia by NADH fluorescence photography. Ann Surg 186:737–740

    CAS  PubMed Central  PubMed  Google Scholar 

  208. Franke H, Barlow CH, Chance B (1976) Oxygen delivery in perfused rat kidney: NADH fluorescence and renal functional state. Am J Physiol 231(4):1082–1089

    CAS  PubMed  Google Scholar 

  209. Franke H, Barlow CH, Chance B (1980) Surface fluorescence of reduced pyridine nucleotide of the perfused rat kidney: interrelation between metabolic and functional states. Contrib Nephrol 19:240–247

    CAS  PubMed  Google Scholar 

  210. Franke H, Barlow CH, Chance B (1980) Fluorescence of pyridine nucleotide and flavoproteins as an indicator of substrate oxidation and oxygen demand of the isolated perfused rat kidney. Int J Biochem 12:269–275

    CAS  PubMed  Google Scholar 

  211. Harken AH, Barlow CH, Harden WR III, Chance B (1978) Two and three dimensional display of myocardial ischemic “border zone” in dogs. Am J Cardiol 42:954–959

    CAS  PubMed  Google Scholar 

  212. Haselgrove J, Barlow C, Chance B, Joyce E, Kanamuller H, Bruckner M (1978) Three dimensional display of the ischemic region of a rat heart. In: Dutton PL, Leigh JS, Scarpa A (eds) Frontiers of biological energetics, 2nd edn. Academic Press, New York, pp 1515–1522

    Google Scholar 

  213. Haselgrove J, Barlow CH, Chance B (1980) The 3D distribution of metabolic states in the gerbil brain during the course of spreading depression. In: Passoneau JV, Hawkins RA, Lust WD, Welsh FA (eds) Cerebral metabolism and neural function. Williams & Wilkins, Baltimore/London, pp 72–76

    Google Scholar 

  214. Haselgrove J, Barlow C, Eleff E, Chance B, Lebordais S (1981) Correlation of electrical signals and mitochondrial redox state during spreading depression. In: Kovach AGB, Dora E, Kessler M, Silver IA (eds) Advances in physiological science, 25th edn. Pergamon, Budapest, pp 25–26

    Google Scholar 

  215. Haselgrove JC, Bashford CL, Barlow CH, Quistorff B, Chance B, Mayevsky A (1990) Time resolved 3-D recording of redox ratio during spreading depression in gerbil brain. Brain Res 506:109–114

    CAS  PubMed  Google Scholar 

  216. Simson MB, Harden W, Barlow C, Harken AH (1979) Visualization of the distance between perfusion and anoxia along an ischemic border. Circulation 60(5):1151–1155

    CAS  PubMed  Google Scholar 

  217. Simson MB, Harden WR III, Barlow CH, Harken AH (1979) Epicardial ischemia as delineated with epicardial S-T segment mapping and nicotinamide adenine dinucleotide (NADH) fluorescence photography. Am J Cardiol 44:263–269

    CAS  PubMed  Google Scholar 

  218. Wetstein L, Rastegar H, Barlow CH, Harken AH (1984) Delineation of myocardial ischemia in an isolated blood-perfused rabbit heart preparation. J Surg Res 37:285–289

    CAS  PubMed  Google Scholar 

  219. Barlow CH, Chance B, Haselgrove J, Sorge J (1982) Optical measurements of oxygen delivery and consumption in gerbil cerebral cortex. Am J Physiol 242:C265–C271

    PubMed  Google Scholar 

  220. Weiss JP, Barlow CH, Chance B (1978) Pentobarbital-induced reduction of pyridine nucleotide measured by surface fluorometry in perfused rat heart. Biochem Pharmacol 27:1510–1511

    CAS  PubMed  Google Scholar 

  221. Harken AH, Simson MB, Haselgrove J, Wetstein L, Harden WR III, Barlow CH (1981) Early ischemia after complete coronary ligation in the rabbit, dog, pig and monkey. Am J Physiol 241:H202–H210

    CAS  PubMed  Google Scholar 

  222. Barlow CH, Harden WR III, Harken AH, Simson MB, Haselgrove JC, Chance B, O’Connor M, Austin G (1979) Fluorescence mapping of mitochondrial redox changes in heart and brain. Crit Care Med 7(9):402–406

    CAS  PubMed  Google Scholar 

  223. Barlow CH, Harken AH, Simson MB, Harden W III, Rastegar H, Chance B (1978) Resolution of ischemic borderzone by NADH fluorophotography in insolated perfused rabbit hearts. Front Biol Energet 2:1533–1540

    Google Scholar 

  224. Harken AH, Barlow CH, Chance B (1977) Evaluation of myocardial oxygen supply-demand by NADH fluorescence photography. Surg Forum 28:271–272

    CAS  PubMed  Google Scholar 

  225. Harden WR III, Barlow CH, Harken AH (1979) Epicardial NADH fluorescence in altered mitochondrial redox states. J Surg Res 27(3):156–162

    CAS  PubMed  Google Scholar 

  226. Barlow CH, Rorvik DA, Kelly JJ (1998) Imaging epicardial oxygen. Ann Biomed Eng 26(1):76–85

    CAS  PubMed  Google Scholar 

  227. Harden WR III, Barlow CH, Simson MB, Harken AH (1980) Heterogeneity of the coronary microcirculation during low-flow ischemia: a model for the heart in shock. Adv Shock Res 3:239–250

    PubMed  Google Scholar 

  228. Harden WR, Simson MB, Barlow CH, Soriano R, Harken AH (1978) Display of epicardial ischemia by reduced nicotamide adenine dinucleotide fluorescence photography, electron microscopy, and ST segment mapping. Surgery (St Louis) 83(6):732–740

    CAS  Google Scholar 

  229. Barlow CH, Bailey E, Kelly KA, Kelly JJ (1998) Reflectance measurement of heart muscle oxygenation. Adv Exp Med Biol 454:487–500

    CAS  PubMed  Google Scholar 

  230. Wetstein L, Simson MB, Haselgrove J, Barlow CH, Harken AH (1982) Mechanism of action of hyaluronidase in decreasing myocardial ischemia post coronary occlusion in the isolated perfused rabbit heart. Am Heart J 104(3):529–536

    CAS  PubMed  Google Scholar 

  231. Harden WR 3rd, Simson MB, Barlow CH, Slagle B, Harken AH (1979) Successful pharmacologic modification of myocardial ischemia. Surg Forum 30:260–262

    PubMed  Google Scholar 

  232. Barlow CH, Kelly JJ (1990) Metabolic spectroscopy for monitoring electromagnetic medical techniques, Emerging electromagnetic medicine. Springer, New York, pp 103–123

    Google Scholar 

  233. Barlow CH, Chance B, Harden W III, Simson MB, Harken AH (1979) Spectroscropic mapping of oxygen supply-demand in heart. In: Caughey WS (ed) Biochemical and clinical aspects of oxygen. Academic Press, New York, pp 845–857

    Google Scholar 

  234. Anderson RE (1975) Instrumentation for in vivo cerebral NADH studies in squirrel monkey. IEEE Trans Biomed Eng BME-22(3):220–224

    Google Scholar 

  235. Anderson RE (1978) Comparison of dark-field and bright-field incident illumination for in vivo measurements of reduced pyridine nucleotides. Anal Biochem 91:496–508

    CAS  PubMed  Google Scholar 

  236. Sundt TM (1977) Cerebral hymodynamic and metabolic alterations in stroke: Formal discussion of paper by Dr. Martin Reivich, et al. In: Reivich M, Coburn R, Lahiri S, Chance B (eds) Tissue hypoxia and ischemia. Plenum, New York and London, pp 337–342

    Google Scholar 

  237. Tomlinson FH, Anderson RE, Meyer FB (1993) Brain pHi, cerebral blood flow, and NADH fluorescence during severe incomplete global ischemia in rabbits. Stroke 24:435–443

    CAS  PubMed  Google Scholar 

  238. Tomlinson FH, Anderson RE, Meyer FB (1993) Acidic foci within the ischemic penumbra of the New Zealand White rabbit. Stroke 24:2030–2040

    CAS  PubMed  Google Scholar 

  239. Anderson RE, Tan WK, Martin HS, Meyer FB (1999) Effects of glucose and PaO2 modulation on cortical intracellular acidosis, NADH redox state, and infarction in the ischemic penumbra. Stroke 30(1):160–170

    CAS  PubMed  Google Scholar 

  240. Anderson RE, Meyer FB (2000) Is intracellular brain pH a dependent factor in NOS inhibition during focal cerebral ischemia? Brain Res 856(1-2):220–226

    CAS  PubMed  Google Scholar 

  241. Anderson RE, Meyer FB (2002) In vivo fluorescent imaging of NADH redox state in brain. In: Abelson JN, Simon MI (eds) Methods in enzymology, vol 352nd edn. Elsevier Science/Academic Press, San Diego, pp 482–494

    Google Scholar 

  242. Anderson RE, Meyer FB (1996) Nitric oxide synthase inhibition by L-NAME during repetitive focal cerebral ischemia in rabbits. Am J Physiol 271(2 pt 2):H588–H594

    CAS  PubMed  Google Scholar 

  243. Sundt TM Jr, Anderson RE, Sharbrough FW (1976) Effect of hypocapnia, hypercapnia, and blood pressure on NADH fluorescence, electrical activity, and blood flow in normal and partially ischemic monkey cortex. J Neurochem 27(5):1125–1133

    CAS  PubMed  Google Scholar 

  244. Anderson RE, Meyer FB (2002) Protection of focal cerebral ischemia by alkalinization of systemic pH. Neurosurgery 51(5):1256–1265

    PubMed  Google Scholar 

  245. Sundt TM, Anderson RE, Michenfelder JD (1979) Intracellular redox states under halothane and barbiturate anesthesia in normal, ischemic, and anoxic monkey brain. Ann Neurol 5(6):575–579. doi:10.1002/ana.410050614

    CAS  PubMed  Google Scholar 

  246. Anderson RE, Meyer FB (2002) In vivo fluorescent imaging of NADH redox state in brain. Methods Enzymol 352:482–494

    CAS  PubMed  Google Scholar 

  247. Ginsberg MD, Reivich M, Frinak S, Harbig K (1976) Pyridine nucleotide redox state and blood flow of the cerebral cortex following middle cerebral artery occlusion in the cat. Stroke 7(2):125–131

    CAS  PubMed  Google Scholar 

  248. Tanaka K, Dora E, Urbanics R, Greenberg JH, Toffano G, Reivich M (1986) Effect of the ganglioside GM1, on cerebral metabolism, microcirculation, recovery kinetics of ECoG and histology, during the recovery period following focal ischemia in cats. Stroke 17:1170–1178

    CAS  PubMed  Google Scholar 

  249. Tanaka K, Dora E, Greenberg JH, Reivich M (1986) Cerebral glucose metabolism during the recovery period after ischemia—its relationship to NADH-fluorescence, blood flow, ECoG and histology. Stroke 17(5):994–1004

    CAS  PubMed  Google Scholar 

  250. Uematsu D, Greenberg JH, Reivich M, Kobayashi H, Karp A (1988) In vivo fluorometric measurement of changes in cytosolic free calcium from the cat cortex during anoxia. J CBF Metab 8:367–374

    CAS  Google Scholar 

  251. Uematsu D, Greenberg JH, Hickey WF, Reivich M (1989) Nimodipine attenuates both increase in cytosolic free calcium and histologic damage following focal cerebral ischemia and reperfusion in cats. Stroke 20:1531–1537

    CAS  PubMed  Google Scholar 

  252. Uematsu D, Greenberg JH, Reivich M, Karp A (1989) Cytosolic free calcium and NAD/NADH redox state in the cat cortex during in vivo activation of NMDA receptors. Brain Res 482:129–135

    CAS  PubMed  Google Scholar 

  253. Uematsu D, Greenberg JH, Araki N, Reivich M (1991) Mechanism underlying protective effect of MK-801 against NMDA-induced neuronal injury in vivo. J CBF Metab 11:779–785

    CAS  Google Scholar 

  254. Uematsu D, Greenberg JH, Reivich M, Karp A (1989) Cytosolic free calcium, NAD/NADH redox state and hemodynamic changes in the cat cortex during severe hypoglycemia. J CBF Metab 9:149–155

    CAS  Google Scholar 

  255. Uematsu D, Araki N, Greenberg JH, Reivich M (1990) Alterations in cytosolic free calcium in the cat cortex during bicuculline-induced epilepsy. Brain Res Bull 24:285–288

    CAS  PubMed  Google Scholar 

  256. Urbanics R, Greenberg JH, Toffano G, Reivich M (1989) Effect of GM1 ganglioside after focal cerebral ischemia in halothane-anesthetized cats. Stroke 20(6):795–802

    CAS  PubMed  Google Scholar 

  257. Uematsu D, Greenberg JH, Reivich M, Karp A (1988) In vivo measurement of cytosolic free calcium during cerebral ischemia and reperfusion. Ann Neurol 24(3):420–428

    CAS  PubMed  Google Scholar 

  258. Acad B, Guggenheimer E, Sonn J, Kedem J (1983) Differential effects of various inotropic agents on the intracellular NADH redox level in the in vivo dog heart. J Cardiovasc Pharmacol 5:284–290

    CAS  PubMed  Google Scholar 

  259. Acad B, Sonn J, Furman E, Kedem J (1986) Variations in left and right ventricular oxygen balance produced by paired electrical stimulations. Arch Int Physiol Biochim 94:37–43

    CAS  PubMed  Google Scholar 

  260. Acad B, Sonn J, Furman E, Scheinowitz M, Kedem J (1987) Specific effects of nitroprusside on myocardial O2 balance following coronary ligation in the dog heart. J Cardiovasc Pharmacol 9:79–86

    CAS  PubMed  Google Scholar 

  261. Dvir S, Acad B-A, Sonn J, Furman E, Kedem J (1985) Preservation of myocardial oxygen balance and functional reserve by coronary vasodilators. Arch Int Physiol Biochim 93:231–239

    CAS  PubMed  Google Scholar 

  262. Furman E, Sonn J, Acad BA, Dvir S, Kedem J (1986) Relation between myocardial substrate utilization, oxygen consumption and regional oxygen balance in the dog heart in vivo. Arch Int Physiol Biochim 94:285–293

    CAS  PubMed  Google Scholar 

  263. Kedem J, Mayevsky A, Sonn J, Acad B (1981) An experimental approach for evaluation of the O2 balance in local myocardial regions in vivo. Q J Exp Physiol 66:501–514

    CAS  PubMed  Google Scholar 

  264. Sonn J, Acad B, Mayevsky A, Kedem J (1981) Effect of coronary vasodilation produced by hypopnea upon regional myocardial oxygen balance. Arch Int Physiol Biochim 89:445–455

    CAS  PubMed  Google Scholar 

  265. Sonn J, Mayevsky A, Acad B, Guggenheimer E, Kedem J (1982) Effect of local ischemia on the myocardial oxygen balance and its response to heart rate elevation. Q J Exp Physiol 67:335–348

    CAS  PubMed  Google Scholar 

  266. Kedem J, Tzikoni E, Feldman S, Sonn J (1982) Real time data acquisition and analysis of cardiovascular experiments in dogs. Comput Prog Biomed 14:21–28

    CAS  Google Scholar 

  267. Kedem J, Scheinowitz M, Furman E, Sonn J, Weiss HR (1989) Relation between contraction and metabolic efficiency. In: Sideman S, Beyar R (eds) Analysis and simulation of the cardiac system: ischemia. CRC Press, Boca Raton, pp 391–407

    Google Scholar 

  268. Furman E, Acad B-A, Sonn J, Raul A, Kedem J (1985) Effect of global vs. regional ischaemia upon myocardial contractility and oxygen balance. Cardiovasc Res 19:606–612

    CAS  PubMed  Google Scholar 

  269. Kedem J, Sonn J, Scheinowitz M, Weiss HR (1992) Effect of isoproterenol on regional myocardial segment work, O2 consumption, and oxygen balance. Res Exp Med 192:323–334

    CAS  Google Scholar 

  270. Kedem J, Furman E, Acad B, Sonn J, Dvir S (1986) Effect of coronary vasodilators and pacing upon regional oxygen balance of the ischaemic myocardium. Arch Int Physiol Biochim 94:197–204

    CAS  PubMed  Google Scholar 

  271. Kedem J, Sonn J, Scheinowitz M, Weiss HR (1989) Relationship between local oxygen consumption and local and external cardiac work: effect of tachycardia. Cardiovasc Res 23:1043–1052

    CAS  PubMed  Google Scholar 

  272. Bruining HA, Pierik GJM, Ince C, Ashruf F (1992) Optical spectroscopic imaging for non-invasive evaluation of tissue oxygenation. Chirurgie 118:317–323

    CAS  PubMed  Google Scholar 

  273. Ince C, Vink H, Wieringa PA, Giezeman M, Spaan JAE (1990) Heterogeneous NADH fluorescence during post-anoxic reactive hyperemia in saline perfused rat heart. Adv Exp Med Biol 277:477–482

    CAS  PubMed  Google Scholar 

  274. Ince C, Coremans JMCC, Bruining HA (1992) In vivo NADH fluorescence. In: Erdmann W, Bruley DF (eds) Oxygen transport to tissue. Plenum, New York, pp 277–296

    Google Scholar 

  275. Ince C, Ashruf JF, Sanderse EA, Pierik EG, Coremans JM, Bruining HA (1992) In vivo NADH and Pd-porphyrin video fluori-/phosphorimetry. Adv Exp Med Biol 317:267–275

    CAS  PubMed  Google Scholar 

  276. Ince C, Ashruf JF, Avontuur JAM, Wieringa PA, Spaan JAE, Bruining HA (1993) Heterogeneity of the hypoxic state in rat heart is determined at capillary level. Am J Physiol 264:H294–H301

    CAS  PubMed  Google Scholar 

  277. Pierik EGJM, Ince C, Avontuur JAM, Ashruff J, Bruining HA (1991) The application of NADH fluorescence to identify noninvasively tissue hypoxia in vivo. Eur Surg Res 23:12–13

    Google Scholar 

  278. Hulsmann WC, Ashruf JF, Bruining HA, Ince C (1993) Imminent ischemia in normal and hypertrophic Langendorff rat hearts; effects of fatty acids and superoxide dismutase monitored by NADH surface fluorescence. Biochim Biophys Acta 1181:273–278

    CAS  PubMed  Google Scholar 

  279. Coremans JMCC, Van Aken M, Naus DC, Van Velthuysen ML, Bruining HA, Puppels GJ (2000) Pretransplantation assessment of renal viability with NADH fluorimetry. Kidney Int 57(2):671–683

    CAS  PubMed  Google Scholar 

  280. van der Laan L, Coremans A, Ince C, Bruining HA (1998) NADH videofluorimetry to monitor the energy state of skeletal muscle in vivo. J Surg Res 74(2):155–160

    PubMed  Google Scholar 

  281. Coremans A, Van Aken M, Bruining HA, Puppels GJ (1999) NADH fluorimetry to predict ischemic injury in transplant kidneys. Adv Exp Med Biol 471:335–343

    CAS  PubMed  Google Scholar 

  282. Ince C, Sinaasappel M (1999) Microcirculatory oxygenation and shunting in sepsis and shock. Crit Care Med 27:1369–1377

    CAS  PubMed  Google Scholar 

  283. Ince C, van der Sluijs JP, Sinaasappel M, Avontuur JA, Coremans JM, Bruining HA (1994) Intestinal ischemia during hypoxia and experimental sepsis as observed by NADH videofluorimetry and quenching of Pd-porphine phosphorescence. Adv Exp Med Biol 361:105–110

    CAS  PubMed  Google Scholar 

  284. Balaban RS, Mandel LJ (1980) Coupling of aerobic metabolism to active ion transport in the kidney. J Physiol 304:331–348

    CAS  PubMed Central  PubMed  Google Scholar 

  285. Balaban RS, Blum JJ (1982) Hormone-induced changes in NADH fluorescence and O2 consumption of rat hepatocytes. Am J Physiol 242:C172–C177

    CAS  PubMed  Google Scholar 

  286. Balaban RS, Dennis VW, Mandel LJ (1981) Microfluorometric monitoring of NAD redox state in isolated perfused renal tubules. Am J Physiol 240:F337–F342

    CAS  PubMed  Google Scholar 

  287. Balaban RS, Mandel LJ, Soltoff SP, Storey JM (1980) Coupling of active ion transport and aerobic respiratory rate in isolated renal tubules. Proc Natl Acad Sci USA 77(1):447–451

    CAS  PubMed Central  PubMed  Google Scholar 

  288. Balaban RS, Mandel LJ (1988) Metabolic substrate utilization by rabbit proximal tubule. An NADH fluorescence study. Am J Physiol 254:F407–F416

    CAS  PubMed  Google Scholar 

  289. Fralix TA, Heineman FW, Balaban RS (1990) Effects of tissue absorbance on NAD(P)H and Indo-1 fluorescence from perfused rabbit hearts. FEBS Lett 262(2):287–292

    CAS  PubMed  Google Scholar 

  290. Heineman FW, Balaban RS (1993) Effects of afterload and heart rate on NAD(P)H redox state in the isolated rabbit heart. Am J Physiol 264:H433–H440

    CAS  PubMed  Google Scholar 

  291. Katz LA, Koretsky AP, Balaban RS (1987) Respiratory control in the glucose perfused heart. A 31P-NMR and NADH fluorescence study. FEBS Lett 221(2):270–276

    CAS  PubMed  Google Scholar 

  292. French SA, Territo PR, Balaban RS (1998) Correction for inner filter effects in turbid samples: fluorescence assays of mitochondrial NADH. Am J Physiol 275(3 pt 1):C900–C909

    CAS  PubMed  Google Scholar 

  293. Duboc D, Muffat-Joly M, Renault G, Degeorges M, Toussaint M, Pocidalo JJ (1988) In situ NADH laser fluorimetry of rat fast- and slow-twitch muscles during tetanus. J Appl Physiol 64(6):2692–2695

    CAS  PubMed  Google Scholar 

  294. Duboc D, Renault G, Polianski J, Muffat-Joly M, Toussaint M, Guerin F, Pocidalo J-J, Fardeau M (1987) NADH measured by laser fluorimetry in skeletal muscle in McArdle’s disease. N Engl J Med 316(26):1664–1665

    CAS  PubMed  Google Scholar 

  295. Renault G, Raynal E, Sinet M, Muffat-Joly M, Berthier J-P, Godard B, Cornillault J (1982) Laser fluorescence: absorption measuring device for in situ organ metabolism investigation. San Diego, California

    Google Scholar 

  296. Renault G, Raynal E, Sinet M, Berthier J-P, Godard B, Cornillault J (1982) A laser fluorimeter for direct cardiac metabolism investigation. Optics Laser Technol 14:143–148

    CAS  Google Scholar 

  297. Renault G, Raynal E, Sinet M, Muffat-Joly M, Berthier J-P, Cornillault J, Godard B, Pocidalo J-J (1984) In situ double-beam NADH laser fluorimetry: choice of a reference wavelength. Am J Physiol 246:H491–H499

    CAS  PubMed  Google Scholar 

  298. Renault G, Sinet M, Muffat-Joly M, Fourati T, Polianski J, Meric P, Weiser M, Pocidalo J-J (1984) Evaluation in situ du metabolisme tissulaire par fluorimetrie laser. Presse Med 13:2381–2385

    CAS  PubMed  Google Scholar 

  299. Renault G, Raynal E, Sinet M, Muffat-Joly M, Cornillault J, Pocidalo J-J (1985) In situ NADH laser fluorimetry and its application to the study of cardiac metabolism. Adv Exp Med Biol 191:229–238

    CAS  PubMed  Google Scholar 

  300. Renault G, Sinet M, Muffat-Joly M, Cornillault J, Pocidalo J-J (1985) In situ monitoring of myocardial metabolism by laser fluorimetry: relevance of a test of local ischemia. Lasers Surg Med 5:111–122

    CAS  PubMed  Google Scholar 

  301. Renault G, Duboc D, Degeorges M (1987) In situ laser fluorimetry in cardiology: preliminary results and perspectives. J Appl Cardiol 2:91–104

    CAS  Google Scholar 

  302. Duboc D, Toussaint M, Donsez D, Weber S, Guerin F, Degeorges M, Renault G, Polianski J, Pocidalo JJ (1986) Detection of regional myocardial ischaemia by NADH laser fluorimetry during human left heart catheterization. Lancet 2:522

    CAS  PubMed  Google Scholar 

  303. Renault G, Raynal E, Cornillault J (1983) Cancelling of Fresnel reflection in in situ, double beam laser, fluorimetry using a single optical fiber. J Biomed Eng 5:243–247

    CAS  PubMed  Google Scholar 

  304. Duboc D, Abastado P, Muffat-Joly M, Perrier P, Toussaint M, Marsac C, Francois D, Lavergne T, Pocidalo JJ, Guerin F, Carpentier A (1990) Evidence of mitochondrial impairment during cardiac allograft rejection. Transplantation 50(5):751–755

    CAS  PubMed  Google Scholar 

  305. Renault G, Muffat-Joly M, Polianski J, Hardy RI, Boutineau J-L, Duvent J-L, Pocidalo J-J (1987) NADH in situ laser fluorimetry: effect of pentobarbital on continuously monitored myocardial redox state. Lasers Surg Med 7:339–346

    CAS  PubMed  Google Scholar 

  306. Renault G, Toussaint M, Duboc D, Py A, Conseiller C, Degeorges M (1987) The use of laser fluorometry of NADH in cardiology. Arch Mal Coeur Vaiss 80:43–49

    PubMed  Google Scholar 

  307. Toussaint M, Duboc D, Renault G, Polianski J, Schved M, Donsez D, Weber S, Dessault O, Pocidalo JJ, Guerin F (1987) Study of myocardial metabolism of NADH by laser fluorimetry during cardiac catheterization (in French). Arch Mal Coeur Vaiss 80(9):1341–1349

    CAS  PubMed  Google Scholar 

  308. Toussaint M, Duboc D, Renault G, Guerin F, Degeorges M (1988) Laser fluorimetry of NADH. Arch Mal Coeur Vaiss 81(special no.):47–51.

    Google Scholar 

  309. Rump AFE, Rosen R, Klaus W (1993) Free radical scavenging properties of β-adrenoceptor blockers are not relevant for cardioprotection in isolated rabbit hearts. Arch Pharmacol 348:431–434

    CAS  Google Scholar 

  310. Rump AFE, Picke D, Rosen R, Klaus W (1993) Effects of propranolol, pindolol and carteolol on acute regional myocardial ischemia in isolated rabbit hearts. Drug Res 43(6):641–645

    CAS  Google Scholar 

  311. Rump AFE, Blazincic B, Klaus W (1993) Effect of amrinone and milrinone on myocardial ischemia extent and infarct size in isolated rabbit hearts. Drug Res 43(12):1262–1266

    CAS  Google Scholar 

  312. Rump AFE, Rosen R, Korth A, Klaus W (1993) Deleterious effect of exogenous angiotensin-I on the extent of regional ischaemia and its inhibition by captopril. Eur Heart J 14(1):106–112

    CAS  PubMed  Google Scholar 

  313. Rump AFE, Koreuber D, Rosen R, Klaus W (1993) Cardioprotection by ramiprilat in isolated rabbit hearts. Eur J Pharmacol 241(2-3):201–207

    CAS  PubMed  Google Scholar 

  314. Rump AFE, Rosen R, Klaus W (1993) Cardioprotection by superoxide dismutase: a catecholamine-dependent process? Anesth Analg 76:239–246

    CAS  PubMed  Google Scholar 

  315. Rump AFE, Rosen R, Sigmund B, Fuchs J, Dhein S, Klaus W (1993) Beneficial effect of amrinone on the size of acute regional ischemia in isolated rabbit hearts. J Cardiothorac Vasc Anesth 7(5):573–578

    CAS  PubMed  Google Scholar 

  316. Rump AFE, Schussler M, Acar D, Cordes A, Theisohn M, Rosen R, Klaus W, Fricke U (1994) Functional and antiischemic effects of luteolin-7-glucoside in isolated rabbit hearts. Gen Pharmacol 25(6):1137–1142

    CAS  PubMed  Google Scholar 

  317. Rump AFE, Acar D, Rosen R, Klaus W (1994) Functional and antiischaemic effects of the phosphodiesterase inhibitor levosimendan in isolated rabbit hearts. Pharmacol Toxicol 74(4-5):244–248

    CAS  PubMed  Google Scholar 

  318. Rump AFE, Klaus W (1994) Evidence for norepinephrine cardiotoxicity mediated by superoxide anion radicals in isolated rabbit hearts. Naunyn-Schmiedeberg’s Arch Pharmacol 349(3):295–300

    CAS  Google Scholar 

  319. Rump AFE, Klaus W (1994) Cardiotoxicity of adrenochrome in isolated rabbit hearts assessed by epicardial NADH fluorescence. Arch Toxicol 68(9):571–575

    CAS  PubMed  Google Scholar 

  320. Rump AFE, Acar D, Klaus W (1994) A quantitative comparison of functional and anti-ischaemic effects of the phosphodiesterase-inhibitors, amrinone, milrinone and levosimendan, in rabbit isolated hearts. Br J Pharmacol 112(3):757–762

    CAS  PubMed Central  PubMed  Google Scholar 

  321. Rump AFE, Schussler M, Acar D, Cordes A, Ratke R, Theisohn M, Rosen R, Klaus W, Fricke U (1995) Effects of different inotropes with antioxidant properties on acute regional myocardial ischemia in isolated rabbit hearts. Gen Pharmacol 26(3):603–611

    CAS  PubMed  Google Scholar 

  322. Rump AFE, Klaus W (1995) Comparison of the cardioprotective efficacy of superoxide dismutase in a single and a repetitive coronary occlusion model in rabbit hearts. Arzneim-Forsch 45(10):1063–1106

    CAS  Google Scholar 

  323. Rump AFE, Rosen R, Sigmund B, Fuchs J, Ratke R, Klaus W (1993) Influence of dihydropyridine-type calcium agonists on hemodynamics and myocardial ischemia in isolated rabbit hearts. Drug Res 43(10):1056–1059

    CAS  Google Scholar 

  324. Rump AFE, Schierholz JM, Klaus W (1998) Studies of the cardioprotective effects of ascorbic acid in isolated rabbit hearts. Arzneimittelforschung 48(11):1078–1082

    CAS  PubMed  Google Scholar 

  325. Lewis DV, Schuette WH (1975) NADH fluorescence and [K+]o changes during hippocampal electrical stimulation. J Neurophysiol 38(2):405–417

    CAS  PubMed  Google Scholar 

  326. Lewis DV, Schuette WH (1976) NADH fluorescence [K+]0 and oxygen consumption in cat cerebral cortex during direct cortical stimulation. Brain Res 110:523–535

    CAS  PubMed  Google Scholar 

  327. Vern B, Whitehouse WC, Schuette WH (1975) Sodium fluorescein: a new reference for NADH fluorometry. Brain Res 98:405–409

    CAS  PubMed  Google Scholar 

  328. Vern BA, Schuette WH, Whitehouse WC (1981) Effects of brain stem stimulation on cortical NADH fluorescence, blood flow, and O2 consumption in the cat. Exp Neurol 71:581–600

    CAS  PubMed  Google Scholar 

  329. Vern BA, Schuette WH, Mutsuga N, Whitehouse WC (1979) Effects of ischemia on the removal of extracellular potassium in cat cortex during pentylenetetrazol seizures. Epilepsia 20(6):711–724

    CAS  PubMed  Google Scholar 

  330. Lewis DV, O’Connor MJ, Schuette WH (1974) Oxidative metabolism during recurrent seizures in the penicillin treated hippocampus. Electroencephalogr Clin Neurophysiol 36:347–356

    CAS  PubMed  Google Scholar 

  331. Van Buren JM, Lewis MD, Schuette WH, Whitehouse WC, Marsan CA (1978) Fluorometric monitoring of NADH levels in cerebral cortex: preliminary observations in human epilepsy. Neurosurgery 2(2):114–121

    PubMed  Google Scholar 

  332. Vern B, Schuette WH, Whitehouse WC, Mutsuga N (1976) Cortical oxygen consumption and NADH fluorescence during metrazol seizures in normotensive and hypotensive cats. Exp Neurol 52:82–99

    Google Scholar 

  333. Kessler M, Hoper J, Lubbers DW, Ji S (1981) Local factors affecting regulation of microflow, O2 uptake and energy metabolism. In: Kovach AGB, Dora E, Kessler M, Silver IA (eds) Oxygen transport to tissue, vol 25, Advances in physiological sciences. Pergamon, New York, pp 155–162

    Google Scholar 

  334. Kessler M, Hoper J, Chance B, Lubbers DW, Messmer K, Sinagowitz E (1985) Regulation of reactive hyperaemia in the kidney. Adv Exp Med Biol 191:683–692

    CAS  PubMed  Google Scholar 

  335. Lang H, Kessler M, Starlinger H (1973) Signs of hypoxia measured by means of pO2-multiwire-electrodes by NADH and NADPH fluorescence and determination of lactate and pyruvate formation. In: Kessler M, Bruley DF, Clark LC, Lubbers DW, Silver IA, Strauss J (eds) Oxygen supply, theoretical and practical aspects of oxygen supply and microcirculation of tissue. Urban & Schwarzenberg, Munchen-Berlin-Wien, pp 193–198

    Google Scholar 

  336. Leniger-Follert E, Urbanics R, Harbig K, Lubbers DW (1977) The behavior of local pH and NADH-fluorescence during and after direct activation of the brain cortex. In: Ingvar DH, Lassen NA (eds) Cerebral function, metabolism and circulation, vol 116, 56th edn. Acta Neurologica Scandinavica, Munkgaard, Copenhagen, pp 214–215

    Google Scholar 

  337. Rahmer H, Kessler M (1973) Influence of hemoglobin concentration in perfusate and in blood on fluorescence of pyridine nucleotides (NADH and NADPH) of rat liver. Adv Exp Med Biol 37A:377–382

    CAS  PubMed  Google Scholar 

  338. Rink R, Kessler M, Hajek K (1973) Signs of hypoxia in the small intestine of the rat during hemorrhagic shock. Adv Exp Med Biol 37A:469–475

    CAS  PubMed  Google Scholar 

  339. Hoper J, Kessler M, Ji S, Acker H (1978) Disturbances of extracellular pK, pNa and pH during NO-flow anoxia. Adv Exp Med Biol 92:553–559

    Google Scholar 

  340. Hoper J, Kessler M (1980) Influence of buflomedil on oxygen uptake rate of liver tissue. In: Messmer K (ed) Microcirculation and ischemic vascular diseases: advances in diagnosis and therapy. Abbot Laboratories, pp 243–253

    Google Scholar 

  341. Schnitge H, Scholz R, Bucher T, Lubbers DW (1965) Comparative fluorometric studies on rat liver in vivo and on isolated, perfused hemoglobin free liver. Biochem Z 341(4):334

    Google Scholar 

  342. Welsh FA, Durity F, Langfitt TW (1977) The appearance of regional variations in metabolism at a critical level of diffuse cerebral oligemia. J Neurochem 28:71–79

    CAS  PubMed  Google Scholar 

  343. Welsh FA, Rieder W (1978) Evaluation of in situ freezing of cat brain by NADH fluorescence. J Neurochem 31:299–309

    CAS  PubMed  Google Scholar 

  344. Welsh FA, Ginsberg MD, Rieder W, Budd WW (1980) Deleterious effect of glucose pretreatment on recovery from diffuse cerebral-ischemia in the cat. 2. Regional metabolite levels. Stroke 11(4):355–363

    CAS  PubMed  Google Scholar 

  345. Welsh FA, O’Connor MJ, Marcy VR, Spatacco AJ, Johns RL (1982) Factors limiting regeneration of ATP following temporary ischemia in cat brain. Stroke 13:234–242

    CAS  PubMed  Google Scholar 

  346. Welsh FA (1984) Regional evaluation of ischemic metabolic alterations. J CBF Metab 4:309–316

    CAS  Google Scholar 

  347. Welsh FA, Marcy VR, Sims RE (1991) NADH fluorescence and regional energy metabolites during focal ischemia and reperfusion of rat brain. J CBF Metab 11(3):459–464

    CAS  Google Scholar 

  348. Welsh FA, Sakamoto T, McKee AE, Sims RE (1987) Effect of lactacidosis on pyridine nucleotide stability during ischemia in mouse brain. J Neurochem 49(3):846–851

    CAS  PubMed  Google Scholar 

  349. Kohen E, Kohen C, Thorell B, Akerman L (1968) Kinetics of the fluorescence response to microelectrophoretically introduced metabolites in the single living cell. Biochim Biophys Acta 158:185–188

    CAS  PubMed  Google Scholar 

  350. Kohen E, Kohen C, Thorell B, Schachtschabel D (1975) Multisite analysis of metabolic transients in single living cells by multichannel microfluorometry. Mikrochim Acta 1:223–236

    Google Scholar 

  351. Kohen E, Kohen C, Jenkins W (1966) The influence of microelectrophoretically introduced metabolites on pyridine nucleotide reduction in giant tissue culture ascites cells. Exp Cell Res 44:175–194

    CAS  PubMed  Google Scholar 

  352. Ji S, Chance B, Welsh F (1975) Two-dimensional mapping of the redox state of the brain. Fed Proc 34(30):445

    Google Scholar 

  353. Ji S, Chance B, Stuart BH, Nathan R (1977) Two-dimensional analysis of the redox state of the rat cerebral cortex in vivo by NADH fluorescence photography. Brain Res 119:357–373

    CAS  PubMed  Google Scholar 

  354. Ji S, Chance B, Nishiki K, Smith T, Rich T (1979) Micro-light guides: a new method for measuring tissue fluorescence and reflectance. Am J Physiol 236(3):C144–C156

    CAS  PubMed  Google Scholar 

  355. Ji S, Lemasters JJ, Thurman RG (1980) A non-invasive method to study metabolic events within sublobular regions of hemoglobin-free perfused liver. FEBS Lett 113(1):37–41

    CAS  PubMed  Google Scholar 

  356. Ji S, Fujii T, Lubbers DW (1981) Simultaneous measurement of pyridine nucleotide fluorescence and field potentials from the olfactory cortical slice of the guinea- pig. Experientia (Basel) 37:206–208

    CAS  Google Scholar 

  357. Ji S, Lemasters JJ, Christenson V, Thurman RG (1982) Periportal and pericentral pyridine nucleotide fluorescence from the surface of the perfused liver: evaluation of the hypothesis that chronic treatment with ethanol produces pericentral hypoxia. Proc Natl Acad Sci USA 79:5415–5419

    CAS  PubMed Central  PubMed  Google Scholar 

  358. Ji S, Hoper J, Acker H, Kessler M (1978) The effects of low O2 supply on the respiratory activity, reduced pyridine nucleotide fluorescence, K+ efflux and the surface PO2 and PCO2 of the isolated, perfused rat liver. Adv Exp Med Biol 92:545–552

    Google Scholar 

  359. Gosalvez M, Thurman RG, Chance B, Reinhold H (1972) Mammary tumours in vivo demonstrated by fluorescence of pyridine nucleotide. Br J Radiol 45:510–514

    CAS  PubMed  Google Scholar 

  360. Gosalvez M, Thurman RG, Chance B, Reinhold HS (1972) Indication of hypoxic areas in tumours from in vivo NADH fluorescence. Eur J Cancer 8:267–269

    CAS  PubMed  Google Scholar 

  361. Gosalvez M, Blanco M, Hunter J, Miko M, Chance B (1974) Effects of anticancer agents on the respiration of isolated mitochondria and tumor cells. Eur J Cancer 10(9):567–574

    CAS  PubMed  Google Scholar 

  362. Gosalvez M, Garcia-Canero R, Reinhold H (1975) Delayed pyridine nucleotide reoxidation induced by the anticancer agent VM-26 as measured in vivo and in situ by NADH microfluorimetry. Eur J Cancer 11:709–715

    CAS  PubMed  Google Scholar 

  363. Reinke LA, Thurman RG (1979) Oxidation-reduction state of free NADP+ during mixed-function oxidation in perfused rat livers. Evaluation of the assumptions of near equilibrium by comparisons of surface fluorescence changes and calculated NADP+:NADPH ratios. Biochem Pharmacol 28:2381–2387

    CAS  PubMed  Google Scholar 

  364. Thurman RG, Lemasters JJ (1988) New micro-optical methods to study metabolism in periportal and pericentral regions of the liver lobule. Drug Metab Rev 19:263–281

    CAS  PubMed  Google Scholar 

  365. Olson MJ, Thurman RG (1987) Quantitation of ketogenesis in periportal and pericentral regions of the liver lobule. Arch Biochem Biophys 253(1):26–37

    CAS  PubMed  Google Scholar 

  366. Thurman RG, Ji S, Lemasters JJ (1984) Alcohol-induced liver injury. The role of oxygen. Recent Dev Alcohol 2:103–117

    CAS  PubMed  Google Scholar 

  367. Thurman RG, Kauffman FC, Ji S, Lemasters JJ, Conway JG, Belinsky SA, Kashiwagi T, Matsamura T (1983) Metabolic heterogeneity in the perfused rat liver. Pharmacol Biochem Behav 18(suppl 1):415–419

    CAS  PubMed  Google Scholar 

  368. Pfeifer L, Paul R, Yalcin E, Marx U, Konig F, Fink F (1996) A time-gated laser spectrometer using optical fibres for detecting fluorescent biomolecules in cells and tissue. In: Gonzalez-Mora JL, Borges R, Mas M (eds) Methodological and technical developments. University of La Laguna, Santa Cruz de Tenerife, Spain, pp 42–43

    Google Scholar 

  369. Pfeiffer C, Schidlowski WA, Schubert E, Wodolasski VL (1971) Messung der NADH-fluoreszenz zur beurteilung der effecktivitat der mechanischen energiefreisetzung am hypoxischen myokard. Acta Biol Med Ger 26:1209–1213

    CAS  PubMed  Google Scholar 

  370. Rex A, Schmalziguag K, Fink F, Fink H (1996) In vivo monitoring of NADH using laser-induced fluorescence spectroscopy. In: Gonzalez-Mora JL, Borges R, Mas M (eds) Methodological and technical developments. University of La Laguna, Santa Cruz de Tenerife, Spain, pp 44–45

    Google Scholar 

  371. Riepe MW, Schmalzigaug K, Fink F, Oexle K, Ludolph AC (1996) NADH in the pyramidal cell layer of hippocampal regions CA1 and CA3 upon selective inhibition and uncoupling of oxidative phosphorylation. Brain Res 710(1-2):21–27

    CAS  PubMed  Google Scholar 

  372. Pfeifer L, Schmalzigaug K, Paul R, Lichey J, Kemnitz K, Fink F (1995) Time-resolved autofluorescence measurements for the differentiation of lung-tissue states. In: Generic, Barcelona

    Google Scholar 

  373. Rex A, Pfeifer L, Fink H (2001) Determination of NADH in frozen rat brain sections by laser-induced fluorescence. Biol Chem 382(12):1727–1732

    CAS  PubMed  Google Scholar 

  374. Rex A, Hentschke MP, Fink H (2002) Bioavailability of reduced nicotinamide-adenine-dinucleotide (NADH) in the central nervous system of the anaesthetized rat measured by laser-induced fluorescence spectroscopy. Pharmacol Toxicol 90(4):220–225

    CAS  PubMed  Google Scholar 

  375. Hassinen I, Jamsa T (1982) A reflectance spectrophotometer-surface fluorometer suitable for monitoring changes in hemoprotein spectra and fluorescence of flavins and nicotinamide nucleotides in intact tissues. Anal Biochem 120:365–372

    CAS  PubMed  Google Scholar 

  376. Hassinen I, Ito K, Nioka S, Chance B (1990) Mechanism of fatty acid effect on myocardial oxygen consumption. A phosphorus NMR study. Biochim Biophys Acta 1019(1):73–80

    CAS  PubMed  Google Scholar 

  377. Ylitalo KV, Ala-Rami A, Liimatta EV, Peuhkurinen KJ, Hassinen IE (2000) Intracellular free calcium and mitochondrial membrane potential in ischemia/reperfusion and preconditioning. J Mol Cell Cardiol 32(7):1223–1238

    CAS  PubMed  Google Scholar 

  378. Hassinen I, Chance B (1968) Oxidation-reduction properties of the mitochondrial flavoprotein chain. Biochem Biophys Res Commun 31(6):895–900

    CAS  PubMed  Google Scholar 

  379. Hassinen IE, Ylikahri RH, Kahonen MT (1971) Regulation of cellular respiration by thyroid hormone. Spectroscopic evidence of mitochondrial control in intact rat liver. Arch Biochem Biophys 147(1):255–261

    CAS  PubMed  Google Scholar 

  380. Moravec J, Hatt PY, Opie LH, Rost FD (1972) The application of the cytophotometer to the study of metabolic transitions of isolated rat heart. Cardiology 57(1-2):61–66

    CAS  PubMed  Google Scholar 

  381. Moravec J, Corsin A, Owen P, Opie LH (1974) Effect of increased aortic perfusion pressure on fluorescent emission of the isolated rat heart. J Mol Cell Cardiol 6:187–200

    CAS  PubMed  Google Scholar 

  382. Moravec J, Corsin A, Hatt PY (1975) Dependence of myocardial redox systems on the concentration of exogenous substrate. In: Roy P-E, Harris P (eds) The cardiac sarcoplasm. University Park Press, Baltimore, pp 167–177

    Google Scholar 

  383. Moravec J, Corsin A, Laplace M, Dronne M-T (1980) Possible relationship between tissue level of long chain acyl-CoA and the ability of the overloaded myocardium to oxidize an excess of reduced pyridine nucleotide. FEBS Lett 113(1):134–136

    CAS  PubMed  Google Scholar 

  384. Moravec J, Moravec M, Hatt PY (1981) Rate of pyridine nucleotide oxidation and cytochrome oxidase interaction with intracellular oxygen in hearts from rats with compensated volume overload. Pflugers Arch Eur J Physiol 392:106–114

    CAS  Google Scholar 

  385. Moravec J, Feuvray D (1982) Metabolic volume overload. In: Caldarera CM, Harris P (eds). CLUEB, Bologna, Italy, pp 489–495

    Google Scholar 

  386. Masters BR, Chance B, Fischbarg J (1982) Noninvasive fluorometric study of rabbit corneal redox states and function. In: Cohen J (ed) Noninvasive probes of tissue metabolism. Wiley, New York, pp 79–118

    Google Scholar 

  387. Masters BR, Riley MV, Fischbarg J, Chance B (1983) Pyridine nucleotides of rabbit cornea with histotoxic anoxia: chemical analysis, non-invasive fluorometry and physiological correlates. Exp Eye Res 36:1–9

    Google Scholar 

  388. Masters BR (1984) Noninvasive corneal redox fluorometry. Curr Top Eye Res 4:139–200

    CAS  PubMed  Google Scholar 

  389. Masters BR (1984) Noninvasive redox fluorometry: how light can be used to monitor alterations of corneal mitochondrial function. Curr Eye Res 3(1):23–26

    CAS  PubMed  Google Scholar 

  390. Thorniley MS, Simpkin S, Fuller B, Jenabzadeh MZ, Green CJ (1995) Monitoring of surface mitochondrial NADH levels as an indication of ischemia during liver isograft transplantation. Hepatology 21:1602–1609

    CAS  PubMed  Google Scholar 

  391. Thorniley MS, Lane N, Simpkin S, Fuller B, Jenabzadeh MZ, Green CJ (1996) Monitoring of mitochondrial NADH levels by surface fluorimetry as an indication of ischaemia during hepatic and renal transplantation. Adv Exp Med Biol 388:431–444

    CAS  PubMed  Google Scholar 

  392. Thorniley MS, Lane NJ, Manek S, Green CJ (1994) Non-invasive measurement of respiratory chain dysfunction following hypothermic renal storage and transplantation. Kidney Int 45(5):1489–1496

    CAS  PubMed  Google Scholar 

  393. Osbakken M, Mayevsky A, Ponomarenko I, Zhang D, Duska C, Chance B (1989) Combined in vivo NADH fluorescence and 31P-NMR to evaluate myocardial oxidative phosphorylation. J Appl Cardiol 4:305–313

    Google Scholar 

  394. Osbakken M, Blum H, Wang DJ, Doliba N, Ivanics T, Zhang D, Mayevsky A (1991) In vivo mechanisms of myocardial functional stability during physiological interventions. Gen Cardiol 79:1–13

    CAS  Google Scholar 

  395. Osbakken M, Mitchell M, Zhang D, Mayevsky A, Chance B (1991) In vivo correlation of myocardial metabolism, perfusion and mechanical function during increased cardiac work. Cardiovasc Res 25:749–756

    CAS  PubMed  Google Scholar 

  396. Osbakken M, Mayevsky A (1996) Multiparameter monitoring and analysis of in vivo ischemic and hypoxic heart. J Basic Clin Physiol Pharmacol 7:97–113

    CAS  PubMed  Google Scholar 

  397. Osbakken M, Doliba N, Mitchell MD, Ivanics T, Zhang D, Mayevsky A (1990) Acetylcholine: is it a myocardial metabolic regulator? J Appl Cardiol 5:357–366

    Google Scholar 

  398. Brandes R, Bers DM (1997) Intracellular Ca2+ increases the mitochondrial NADH concentration during elevated work in intact cardiac muscle. Circ Res 80(1):82–87

    CAS  PubMed  Google Scholar 

  399. Brandes R, Bers DM (1996) Increased work in cardiac trabeculae causes decreased mitochondrial NADH fluorescence followed by slow recovery. Biophys J 71:1024–1035

    CAS  PubMed Central  PubMed  Google Scholar 

  400. Brandes R, Figueredo VM, Camacho SA, Weiner MW (1994) Compensation for changes in tissue light absorption in fluorometry of hypoxic perfused rat hearts. Am J Physiol 266(6 pt 2):H2554–H2567

    CAS  PubMed  Google Scholar 

  401. Brandes R, Figueredo VM, Camacho SA, Baker AJ, Weiner MW (1993) Investigation of factors affecting fluorometric quantitation of cytosolic [Ca2+] in perfused hearts. Biophys J 65(5):1983–1993

    CAS  PubMed Central  PubMed  Google Scholar 

  402. Brandes R, Bers DM (2002) Simultaneous measurements of mitochondrial NADH and Ca2+ during increased work in intact rat heart trabeculae. Biophys J 83(2):587–604

    CAS  PubMed Central  PubMed  Google Scholar 

  403. Shiino A, Matsuda M, Handa J, Chance B (1998) Poor recovery of mitochondrial redox state in CA1 after transient forebrain ischemia in gerbils. Stroke 29(11):2421–2424

    CAS  PubMed  Google Scholar 

  404. Shiino A, Haida M, Beauvoit B, Chance B (1999) Three-dimensional redox image of the normal gerbil brain. Neuroscience 91(4):1581–1585

    CAS  PubMed  Google Scholar 

  405. Shiino A, Matsuda M, Chance B (2002) Three-dimensional redox imaging of frozen-quenched brain and other organs. In: Abelson JN, Simon MI (eds) Methods in enzymology, vol 39. Elsevier Science/Academic Press, San Diego, pp 475–482

    Google Scholar 

  406. Shiino A, Matsuda M, Handa J (1997) Mitochondrial redox change in gerbil hippocampus before and after transient ischemia. No To Shinkei 49(11):987–992

    CAS  PubMed  Google Scholar 

  407. Li LZ, Zhou R, Zhong T, Moon L, Kim EJ, Qiao H, Pickup S, Hendrix MJ, Leeper D, Chance B, Glickson JD (2007) Predicting melanoma metastatic potential by optical and magnetic resonance imaging. Adv Exp Med Biol 599:67–78

    PubMed  Google Scholar 

  408. Xu HN, Nioka S, Glickson JD, Chance B, Li LZ (2010) Quantitative mitochondrial redox imaging of breast cancer metastatic potential. J Biomed Opt 15(3):036010. doi:10.1117/1.3431714

    PubMed Central  PubMed  Google Scholar 

  409. Xu HN, Nioka S, Chance B, Li LZ (2011) Heterogeneity of mitochondrial redox state in premalignant pancreas in a PTEN null transgenic mouse model. Adv Exp Med Biol 701:207–213. doi:10.1007/978-1-4419-7756-4_28

    CAS  PubMed  Google Scholar 

  410. Li LZ (2012) Imaging mitochondrial redox potential and its possible link to tumor metastatic potential. J Bioenerg Biomembr 44(6):645–653. doi:10.1007/s10863-012-9469-5

    CAS  PubMed Central  PubMed  Google Scholar 

  411. Xu HN, Zheng G, Tchou J, Nioka S, Li LZ (2013) Characterizing the metabolic heterogeneity in human breast cancer xenografts by 3D high resolution fluorescence imaging. Springerplus 2(1):73. doi:10.1186/2193-1801-2-73

    PubMed Central  PubMed  Google Scholar 

  412. Xu HN, Tchou J, Li LZ (2013) Redox imaging of human breast cancer core biopsies: a preliminary investigation. Acad Radiol 20(6):764–768. doi:10.1016/j.acra.2013.02.006

    PubMed Central  PubMed  Google Scholar 

  413. Xu HN, Mir TA, Lee SC, Feng M, Farhad N, Choe R, Glickson JD, Li LZ (2013) Mapping the redox state of CHOP-treated non-Hodgkin’s lymphoma xenografts in mice. Adv Exp Med Biol 789:243–249. doi:10.1007/978-1-4614-7411-1_33

    CAS  PubMed  Google Scholar 

  414. Xu HN, Nioka S, Li LZ (2013) Imaging heterogeneity in the mitochondrial redox state of premalignant pancreas in the pancreas-specific PTEN-null transgenic mouse model. Biomark Res 1(1):6. doi:10.1186/2050-7771-1-6

    PubMed Central  PubMed  Google Scholar 

  415. Xu HN, Zhou R, Moon L, Feng M, Li LZ (2014) 3D imaging of the mitochondrial redox state of rat hearts under normal and fasting conditions. J Innov Opt Health Sci 7(2):1350045. doi:10.1142/S179354581350045410.1142/S1793545813500454

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mayevsky, A. (2015). Spectroscopic Monitoring of NADH: Historical Overview. In: Mitochondrial Function In Vivo Evaluated by NADH Fluorescence. Springer, Cham. https://doi.org/10.1007/978-3-319-16682-7_3

Download citation

Publish with us

Policies and ethics