Semantic Trajectories: A Survey from Modeling to Application

  • Basma H. AlbannaEmail author
  • Ibrahim F. Moawad
  • Sherin M. Moussa
  • Mahmoud A. Sakr
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)


Trajectory data analysis has recently become an active research area. This is due to the large availability of mobile tracking sensors, such as GPS-enabled smart phones. However, those GPS trackers only provide raw trajectories (x, y, t), ignoring information about the activity, transportation mode, etc. This information can contribute in producing significant knowledge about movements, which transforms raw trajectories into semantic trajectories. Therefore, research lately has focused on semantic trajectories; their representation, construction, and applications. This paper investigates the current studies on semantic trajectories so far. We propose a new classification schema for the research efforts in semantic trajectory construction and applications. The proposed classification schema includes three main classes: semantic trajectory modeling, computation, and applications. Besides, we discuss the current research gaps found in this research area.


Semantic trajectories Activity recognition Data modeling Data segmentation Semantic applications Sensor data 


  1. 1.
    Yan Z, Chakraborty D, Misra A, Jeung H, Aberer K (2012) Semantic activity classification using locomotive signatures from mobile phonesGoogle Scholar
  2. 2.
    Bao L, Intille S (2004) Pervasive computing, vol 3001. Springer, Berlin, pp 1–17Google Scholar
  3. 3.
    Yan Z, Parent C (2010) The semantic web: research and applications, vol 6088. Springer, Berlin, pp 60–75Google Scholar
  4. 4.
    Yan Z, Chakraborty D, Parent C, Spaccapietra S, Aberer K (2011) SeMiTri. In: Proceedings of the 14th international conference on extending database technology—EDBT/ICDT ’11, p 259Google Scholar
  5. 5.
    Yu F, Ip HHS (2008) Semantic content analysis and annotation of histological images. Comput Biol Med 38(6):635–649Google Scholar
  6. 6.
    Zhixian Y (2011) Semantic trajectories: computing and understanding mobility data In: Ph.D. dissertation, Swiss Federal Institute of Technology, Information and Communication Dept., LausanneGoogle Scholar
  7. 7.
    Parent C, Pelekis N, Theodoridis Y, Yan Z, Spaccapietra S, Renso C, Andrienko G, Andrienko N, Bogorny V, Damiani ML, Gkoulalas-Divanis A, Macedo J (2013) Semantic trajectories modeling and analysis. ACM Comput Surv 45:1–32Google Scholar
  8. 8.
    Yan Z, Spaccapietra S (2009) Towards semantic trajectory data analysis: a conceptual and computational approach. VLDB PhD Work 15(2):165–190Google Scholar
  9. 9.
    Zheni D, Frihida A (2009) A semantic approach for the modeling of trajectories in space and time. In: Advances in conceptual modelling, pp 347–356Google Scholar
  10. 10.
    Marketos ARG, Frentzos E, Ntoutsi I, Pelekis N, Raffaetà A, Theodoridis Y (2008) Building real-world trajectory warehouses. In: MobiDEGoogle Scholar
  11. 11.
    Zhou C, Frankowski D, Ludford P, Shekhar S, Terveen L (2004) Discovering personal gazetteers. In: Proceedings of the 12th annual ACM international workshop on geographic information systems—GIS ’04, p 266Google Scholar
  12. 12.
    Parent C, Spaccapietra S, Zimányi E (2006) Conceptual modeling for traditional and spatio-temporal applications: the MADS approach. Springer, New York, p 450Google Scholar
  13. 13.
    Wannous R, Malki J, Bouju A (2013) Time integration in semantic trajectories using an ontological modelling approach A case study with experiments, optimization and evaluation of an integration approach. Springer, BerlinGoogle Scholar
  14. 14.
    Wannous R, Malki J, Bouju A, Vincent C (2013) Modeling approaches and algorithms for advanced computer applications, vol 488. Springer International Publishing, ChamGoogle Scholar
  15. 15.
    Alvares LO, Bogorny V, Kuijpers B, de Macedo JAF, Moelans B, Vaisman A (2007) A model for enriching trajectories with semantic geographical information. In: Proceedings of the 15th annual ACM international symposium on advances in geographic information systems—GIS ’07, p 1Google Scholar
  16. 16.
    Xie K, Deng K, Zhou X (2009) From trajectories to activities. In: Proceedings of the 2009 international workshop on location based social networks—LBSN ’09, p 25Google Scholar
  17. 17.
    Zhao XL, Xu WX (2009) A clustering-based approach for discovering interesting places in a single trajectory. In: 2009 2nd international conference on intelligent computing technology and automation, ICICTA 2009, vol 3, pp 429–432Google Scholar
  18. 18.
    Schuessler N, Axhausen KW (2009) Processing raw data from global positioning systems without additional information. Transp Res Rec J Transp Res Board 2105(1):28–36Google Scholar
  19. 19.
    Zheng Y, Chen Y, Li Q, Xie X, Ma W-Y (2010) Understanding transportation modes based on GPS data for web applications. ACM Trans Web 4(1):1–36Google Scholar
  20. 20.
    Ravi N, Dandekar N, Mysore P, Littman M (2009) Distributed computing, artificial intelligence, bioinformatics, soft computing, and ambient assisted living, vol 5518. Springer, BerlinGoogle Scholar
  21. 21.
    Kiukkonen N, Blom J, Dousse O (2010) Towards rich mobile phone datasets: Lausanne data collection campaign. Proc ICPS, BerlinGoogle Scholar
  22. 22.
    Choujaa D, Dulay N (2010) Predicting human behaviour from selected mobile phone data points. In: Proceedings of the 12th ACM international conference on Ubiquitous computing—Ubicomp ’10, p 105Google Scholar
  23. 23.
    Yan Z, Giatrakos N, Katsikaros V (2011) Advances in spatial and temporal databases, vol 6849. Springer, Berlin, pp 367–385Google Scholar
  24. 24.
    Schüssler N, Axhausen KW (2009) Processing GPS raw data without information. Transp Res Rec J Transp Res Board 8:28–36Google Scholar
  25. 25.
    Douglas D, Peucker T (1973) Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Can Cartogr 10(2):112–122Google Scholar
  26. 26.
    Meratnia N, de By RA (2004) Spatiotemporal compression techniques for moving point objects. In: EDBTGoogle Scholar
  27. 27.
    Potamias M, Patroumpas K, Sellis T (2006) Sampling trajectory streams with spatiotemporal criteria. In: 18th international conference on scientific and statistical database management (SSDBM’06), pp 275–284Google Scholar
  28. 28.
    Yan Z, Chakraborty D, Parent C, Spaccapietra S, Aberer K (2013) Semantic trajectories. ACM Trans Intell Syst Technol 4(3):1Google Scholar
  29. 29.
    Yan Z, Spremic L, Chakraborty D, Parent C, Spaccapietra S, Aberer K (2010) Automatic construction and multi-level visualization of semantic trajectories. In: Proceedings of the 18th SIGSPATIAL international conference on advances in geographic information systems—GIS ’10, vol 12, p 524Google Scholar
  30. 30.
    Xiu-Li Z, Wei-Xiang X (2009) A clustering-based approach for discovering interesting places in a single trajectory. In: 2009 second international conference on intelligent computation technology and automation, pp 429–432Google Scholar
  31. 31.
    Spaccapietra S, Parent C, Damiani ML, de Macedo JA, Porto F, Vangenot C (2008) A conceptual view on trajectories. Data Knowl Eng 65(1):126–146Google Scholar
  32. 32.
    Vald F, Damiani ML, Güting RH, (2010) The semantic web: research and applications, vol 6088, Part 2. Springer, Berlin, pp 450–453Google Scholar
  33. 33.
    Mountain D, Raper J (2001) Modelling human spatio-temporal behaviour: a challenge for location-based services. In: Proceedings of the sixth international conference on geocomputationGoogle Scholar
  34. 34.
    Alvares LO, Bogorny V, de Macedo JAF, Moelans B, Spaccapietra S (2007) Dynamic modeling of trajectory patterns using data mining and reverse engineering. In: Tutorials, posters, panels and industrial contributions at the 26th international conference on conceptual modeling, vol 83, pp 149–154Google Scholar
  35. 35.
    Krumm J, Horvitz E (2006) Predestination: inferring destinations from partial trajectories. In: Proceedings of the 8th international conference on Ubiquitous computing (UbiComp ’06), pp 243–260Google Scholar
  36. 36.
    Backstrom L, Sun E, Marlow C (2010) Find me if you can: improving geographical prediction with social and spatial proximity. In: Proceedings of the 19th international conference on world wide web, pp 61–70Google Scholar
  37. 37.
    Ying JJ-C, Lee W-C, Tseng VS (2013) Mining geographic-temporal—semantic patterns in trajectories for location prediction. ACM Trans Intell Syst Technol 5(1):1–33Google Scholar
  38. 38.
    Bakshev S, de Macêdo J, Spisanti L (2010) Semantic visualization of trajectories. In: ICEIS, pp 1–10Google Scholar
  39. 39.
    Alvares L, Palma A, Oliveira G, Bogorny V (2010) Weka-STPM: from trajectory samples to semantic trajectories. In: Proceedings of the Workshop Open Source Code, vol 1Google Scholar
  40. 40.
    Li Z, Ji M, Lee J, Tang L, Yu Y, Han J, Kays R (2010) MoveMine. In: Proceedings of the 2010 international conference on management of data—SIGMOD ’10, p 1203Google Scholar
  41. 41.
    Moreno B, Times V, Renso C, Bogorny V (2010) Looking inside the stops of trajectories of moving objects. In: GeoinfoGoogle Scholar
  42. 42.
    Ilarri S, Stojanovic D, Ray C (2015) Semantic management of moving objects: a vision towards smart mobility. Expert Syst Appl 42(3):1418–1435Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Basma H. Albanna
    • 1
    Email author
  • Ibrahim F. Moawad
    • 1
  • Sherin M. Moussa
    • 1
  • Mahmoud A. Sakr
    • 1
  1. 1.Faculty of Computer and Information ScienceAin Shams UniversityCairoEgypt

Personalised recommendations