Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

In 1991, the Vindeby Offshore Wind Farm, the first offshore wind farm in the world, started feeding electricity to the grid off the coast of Lolland, Denmark. Since then, offshore wind energy has developed from this early experiment to a multibillion dollar market and an important pillar of worldwide renewable energy production. Unit sizes grew from 450 kW at Vindeby to the 7.5 MW-class offshore wind turbines (GlossaryTerm

OWT

) that are currently (by October 2014) in the prototyping phase.

This chapter gives an overview of the state of the art in offshore wind turbine (GlossaryTerm

OWT

) technology and introduces the principles of modeling and simulating an GlossaryTerm

OWT

. The GlossaryTerm

OWT

components – including the rotor, nacelle, support structure, control system, and power electronics – are introduced, and current technological challenges are presented. The GlossaryTerm

OWT

system dynamics and the environment (wind and ocean waves) are described from the perspective of GlossaryTerm

OWT

modelers and designers. Finally, an outlook on future technology is provided.

The descriptions in this chapter are focused on a single GlossaryTerm

OWT

 – more precisely, a horizontal-axis wind turbine – as a dynamic system. Offshore wind farms and wind farm effects are not described in detail in this chapter, but an introduction and further references are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3-D:

three-dimensional

DFIG:

doubly-fed generator

DOF:

degree of freedom

EESG:

electrically-excited-synchronous generator

FEM:

finite element method

GBS:

gravity-based substructure

GDW:

generalized dynamic wake

HAWT:

horizontal-axis wind turbine

IGBT:

insulated-gate bipolar transistor

IG:

induction generator

MBS:

multibody simulation

OWT:

offshore wind turbine

PMSG:

permanent-magnet-excited-synchronous generator

RNA:

rotor-nacelle assembly

References

  • EWEA: Wind in Power – 2012 European Statistics (European Wind Energy Association, Brussels 2013)

    Google Scholar 

  • GWEC: Global Wind Statistics 2012 (Global Wind Energy Council, Brussels 2013)

    Google Scholar 

  • EWEA: The European Offshore Wind Industry – Key Trends and Statistics 2012 (European Wind Energy Association, Brussels 2013)

    Google Scholar 

  • Federal Government of Germany: Das Energiekonzept für eine umweltschonende, zuverlässige und bezahlbare Energieversorgung (Federal Government of Germany, Berlin 2010)

    Google Scholar 

  • T. Burton, N. Jenkins, D. Sharpe, E. Bossanyi: Wind Energy Handbook (Wiley, Chichester 2011)

    Book  Google Scholar 

  • IEC: Wind Turbines – Part 3: Design Requirements for Offshore Wind Turbines, IEC 61400-3 (International Electrotechnical Commission, Geneva 2009)

    Google Scholar 

  • J.F. Manwell, J.G. McGowan, A.L. Rogers: Wind Energy Explained: Theory, Design and Application, 2nd edn. (Wiley, Chichester 2010)

    Google Scholar 

  • R. Gasch, J. Twele (Eds.): Windkraftanlagen , 5th edn. (Vieweg+Teubner Verlag, Wiesbaden 2007)

    Google Scholar 

  • E. Hau: Wind Turbines: Fundamentals, Technologies, Applications, Economics , 3rd edn (Springer, Heidelberg 2012)

    Google Scholar 

  • S. Siegfriedsen, G. Böhmeke: Multibrid technology – A significant step to multi-megawatt wind turbines, Wind Energy 1, 89–100 (1998)

    Article  Google Scholar 

  • P. Jamieson: Innovation in Wind Turbine Design (Wiley, Chichester 2011)

    Book  Google Scholar 

  • J. Wenske: Special report direct drives and drive-train development trends. In: Wind Energy Report Germany 2011, ed. by S. Pfaffel, V. Berkhout, S. Faulstich, P. Kühn, K. Linke, P. Lyding, R. Rothkegel (Fraunhofer Institute for Wind Energy and Energy System Technology, Kassel 2011) pp. 59–63

    Google Scholar 

  • M.N. Kotzalas, G.L. Doll: Tribological advancements for reliable wind turbine performance, Philos. Trans. R. Soc. A 368(1929), 4829–4850 (2010)

    Article  Google Scholar 

  • M. Kühn: Dynamics and Design Optimisation of Wind Energy Conversion Systems, Ph.D. Thesis (Delft University of Technology, Delft 2001)

    Google Scholar 

  • W.E. de Vries, V.D. Krolis: Effects of deep water on monopile support structures for offshore wind turbines, European Wind Energy Conference (2007)

    Google Scholar 

  • J. Jonkman, S. Butterfield, W. Musial, G. Scott: Definition of a 5-MW Reference Wind Turbine for Offshore System Development (National Renewable Energy Laboratory, Golden 2009)

    Book  Google Scholar 

  • K. Fischer, T. Stalin, H. Ramberg, T. Thiringer, J. Wenske, R. Karlsson: Investigation of Converter Failure in Wind Turbines – A Pre-Study (Elforsk report 12:58) (Vindforsk, Stockholm 2012)

    Google Scholar 

  • M. Wilkinson, B. Hendriks: Deliverable D1.3: Report on Wind Turbine Reliability Profiles (Reliawind, Brussels 2011)

    Google Scholar 

  • C. Kupferschmidt, M. Strach, H. Huhn, F. Vorpahl: Offshore wind support structures. In: Handbook of Technical Diagnostics, ed. by H. Czichos (Springer, Heidelberg 2012) pp. 505–518

    Google Scholar 

  • F. Vorpahl, H. Schwarze, T. Fischer, M. Seidel, J. Jonkman: Offshore wind turbine environmental loads simulation and design, Wiley Interdiscip. Rev. Energy Environ. 2, 548–570 (2012)

    Article  Google Scholar 

  • J. van der Tempel: Design of Support Structures for Offshore Wind Turbines, Ph.D. Thesis (Delft University of Technology, Delft 2006)

    Google Scholar 

  • I. van der Hoven: Power spectrum of horizontal wind speed in the frequency range from 0.007 to 900 cycles per hour, J. Meteorol. 14, 160–164 (1956)

    Article  Google Scholar 

  • G. Lloyd: Guideline for the Certification of Offshore Wind Turbines (Germanischer Lloyd, Hamburg 2012)

    Google Scholar 

  • A. Betz: Wind-Energie und ihre Ausnutzung durch Windmühlen (Vandenhoeck and Ruprecht, Göttingen 1926)

    Google Scholar 

  • J.C. Kaimal, J.C. Wyngaard, Y. Izumi, O.R. Coté: Spectral characteristics of surface-layer turbulence, Q. J. R. Meteorol. Soc. 98, 563–589 (1972)

    Article  Google Scholar 

  • J. Mann: The spatial structure of neutral atmospheric surface-layer turbulence, J. Fluid Mech. 273, 141–168 (1994)

    Article  MATH  Google Scholar 

  • O.M. Faltinsen: Sea Loads on Ships and Offshore Structures (Cambridge Univ. Press, Cambridge 1990)

    Google Scholar 

  • G. Clauss, E. Lehmann, C. Östergaard: Offshore Structures – Conceptual Design and Hydromechanics (Springer, Heidelberg 1992)

    Google Scholar 

  • S. Chakrabarti (Ed.): Handbook of Offshore Engineering (Elsevier, Oxford 2005)

    Google Scholar 

  • W.J. Pierson Jr., L. Moskowitz: A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii, J. Geophys. Res. 69, 5181–5190 (1964)

    Article  Google Scholar 

  • K. Hasselmann, P. Barnett, T.E. Bouws, H. Carlson, E. Cartwright, D.K. Enke, A. Ewing, J.H. Gienapp, E. Hasselmann, D.P. Kruseman, A. Meerburg, P. Müller, J. Olbers, D.K. Richter, W. Sell, H. Walden: Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP), Ergänzungsheft Dtsch. Hydrogr. Z. 12, 7–95 (1973)

    Google Scholar 

  • P.J. Moriarty, A.C. Hansen: AeroDyn Theory Manual (National Renewable Energy Laboratory, Golden 2005)

    Book  Google Scholar 

  • J.G. Leishman, T.S. Beddoes: A semi-empirical model for dynamic stall, J. Am. Helicopter Soc. 34, 3–17 (1989)

    Article  Google Scholar 

  • D.M. Pitt, D.A. Peters: Theoretical prediction of dynamic-inflow derivatives, Vertica 5, 21–34 (1981)

    Google Scholar 

  • J.R. Morison, M.P. O’Brien, J.W. Johnson, S.A. Schaaf: The force exerted by surface wave on piles, Petroleum Trans. 189, 149–154 (1950)

    Article  Google Scholar 

  • R.C. MacCamy, R.A. Fuchs: Wave Forces on Piles: A Diffraction Theory (Beach Erosion Board Corps of Engineers, Washington DC 1954)

    Google Scholar 

  • J. Jonkman: Dynamics Modeling and Loads Analysis of an Offshore Floating Wind Turbine, Ph.D. Thesis (University of Colorado, Golden 2007)

    Book  Google Scholar 

  • W. Musial, S. Butterfield, A. Boone: Feasibility of floating platform systems for wind turbines, 23rd ASME Wind Energy Symposium (2004)

    Google Scholar 

  • A. Cordle, J. Jonkman: State of the art in floating wind turbine design tools, Proc. 21st Int. Offshore Polar Eng. Conf. (2011) pp. 367–374

    Google Scholar 

  • D. Matha, M. Schlipf, A. Cordle, R. Pereira, J. Jonkman: Challenges in simulation of aerodynamics, hydrodynamics, and mooring-line dynamics of floating offshore wind turbines, Proc. 21st Int. Offshore Polar Eng. Conf. (2011) pp. 421–428

    Google Scholar 

  • Det Norske Veritas: Design of Floating Wind Turbine Structures, DNV-OS-J103 (Det Norske Veritas, Høvik 2013)

    Google Scholar 

  • T.K. Barlas, G.A.M. van Kuik: Review of state of the art in smart rotor control research for wind turbines, Prog. Aerosp. Sci. 46, 1–27 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mareike Strach-Sonsalla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Strach-Sonsalla, M., Stammler, M., Wenske, J., Jonkman, J., Vorpahl, F. (2016). Offshore Wind Energy. In: Dhanak, M.R., Xiros, N.I. (eds) Springer Handbook of Ocean Engineering. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-16649-0_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16649-0_49

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16648-3

  • Online ISBN: 978-3-319-16649-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics