Abstract
Marine hydrokinetic energy includes that due to waves, tides, and ocean currents. The characteristics of these forms of energy and the assessment of their potential for extraction are discussed briefly herein. Detailed consideration is given to the assessment of ocean current energy, including a case study of the resource assessment of the Florida Current. Estimates of global and local open ocean current resources are obtained based on data from an ocean model. The power densities of major western boundary currents are estimated and the potential for development of ocean currents globally is assessed. Principal factors that govern economic viability of harnessing an ocean current at a location include the in-situ power density, the distance of the location from the shore, and the local depth of the seafloor. A metrics based on these considerations is discussed. Once potential sites are identified, considerations would need to be given to regulatory and permitting requirements, including assessment of potential impact on the environment and its ecosystems, marine spatial planning and the impact on the energy resource itself; development of optimal design of devices for high performance; and mitigation of deployment and maintenance costs.
Keywords
- Hydrokinetic Energy
- Ocean Current Energy
- Western Boundary Currents
- Marine Spatial Planning
- Tidal Energy Resource
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsAbbreviations
- HYCOM:
-
hybrid coordinate ocean model
- OM:
-
operations and maintenance
References
O.M. Phillips: On the generation of waves by turbulent wind, J. Fluid Mech. 2(5), 417–445 (1957)
J.W. Miles: On the generation of surface waves by shear flows, J. Fluid Mech. 3(2), 185–204 (1957)
K. Hasselmann, T.P. Barnett, E. Bouws, H. Carlson, D.E. Cartwright, K. Enke, J.A. Ewing, H. Gienapp, D.E. Hasselmann, P. Kruseman, A. Meerburg, P. Müller, D.J. Olbers, K. Richter, W. Sell, H. Walden: Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP), Dtsch. Hydrogr. Z 1(8), 1–95 (1973)
A. Cornett: A global wave energy resource assessment, Proc. 18th ISOPE Conf. (2008)
K. Gunn, C. Stock-Williams: Quantifying the global wave power resource, Renew. Energy 44, 296–304 (2012)
H.L. Tolman: User manual and system documentation of WAVEWATCH-III, Version 2.22, NOAA/NWS/NCEP/MMAB Technical Note (2002)
R. Boud, T.W. Thorpe: Wavenet: Results from the work of the European thematic network on wave energy, ERK5-CT-1999-20001, European Community (2003) pp. 307–308
G. Mørk, S. Barstow, A. Kabuth, T. Pontes: Assessing the global wave energy potential, Proc. 29th Int. Conf. Ocean Offshore Mech. Arct. Eng. (ASME) (2010)
G. Hagerman, G. Scott: Mapping and Assessment of the United States Ocean Wave Energy Resource , Tech. Rep. 1024637 (Electric Power Research Institute, Palo Alto 2011)
AVISO: Sun and Moon shape tides on Earth, Published online October, 2000. http://www.aviso.oceanobs.com/en/news/idm/2000/oct-2000-sun-and-moon-shape-tides-on-earth/index.html
R.H. Charlier, J.R. Justus: Ocean Energies: Environmental, Economic and Technological Aspects of Alternative Power Sources, Elsevier Oceanography Series (Elsevier, Amsterdam 1993)
A. Lewis, S. Estefen, J. Huckerby, W. Musial, T. Pontes, J. Torres-Martinez: Ocean energy. In: IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation, ed. by O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (Cambridge Univ. Press, Cambridge 2011)
M. Pidwirny: Surface and subsurface ocean currents: Ocean current map. In: Fundamentals of Physical Geography, 2nd edn. (eBook) http://www.physicalgeography.net/fundamentals/8q_1.html (2006)
A.E. Gill: Atmosphere-Ocean Dynamics, International Geophysics Series, Vol. 30 (Oxford Academic Press, Oxford 1982)
W.H. Munk: On the wind-driven ocean circulation, J. Meteorol. 7(2), 79–93 (1950)
R.H. Stewart: Introduction to Physical Oceanography, http://oceanworld.tamu.edu/resources/ocng_textbook/PDF_files/book_pdf_files.html
A. Betz: Das Maximum der theoretisch möglichen Ausnützung des Windes durch Windmotoren, Z. Gesamte Turbinenwesen 26, 307–309 (1920)
G.A.M. Van Kuik: The Lanchester–Betz–Joukowsky limit, Wind Energy 10, 289–291 (2007)
V.L. Okulov, J.N. Sørensen: Refined Betz limit for rotors with a finite number of blades, Wind Energy 11, 415–426 (2008)
C. Garrett, P. Cummins: The efficiency of a turbine in a tidal channel, J. Fluid Mech. 588, 243–251 (2007)
T. Nishino, R.H.J. Willden: The efficiency of an array of tidal turbines partially blocking a wide channel, J. Fluid Mech. 708, 596–606 (2012)
C. Garrett, P. Cummins: The power potential of tidal currents in channels, Proc. R. Soc. A. 461, 2563–2572 (2005)
G. Sutherland, M. Foreman, C. Garrett: Tidal current energy assessment for Johnstone Strait, Vancouver Island, Proc. Inst. Mech. Eng, J. Power Energy A. 221(2), 147–157 (2007)
K.A. Haas, H.M. Fritz, S.P. French, B.T. Smith, V. Neary: Assessment of Energy Production Potential from Tidal Streams in the United States: Final Report (Georgia Tech Research Corporation, Savannah 2011)
T.A.A. Adcock, S. Draper, G.T. Houlsby, A.G.L. Borthwick, S. Serhadlıoğlu: The available power from tidal stream turbines in the Pentland Firth, Proc. R. Soc. A 469(2157), 20130072 (2013)
A.E.S. Duerr: A Hydrokinetic Resource Assessment Of the Florida Current, Ph.D. Thesis (Florida Atlantic University, Boca Raton 2012)
A.E.S. Duerr, M.R. Dhanak: An assessment of the hydrokinetic energy resource of the Florida Current, IEEE J. Ocean. Eng. 37, 281–293 (2012)
A.E. Duerr, M.R. Dhanak, J.H. Van Zwieten: Utilizing the hybrid coordinate ocean model for the assessment of Florida Current’s hydrokinetic renewable energy resource, Mar. Technol. Soc. J. 46(5), 24–33 (2012)
J.H. Van Zwieten Jr., A.E.S. Duerr, G.M. Alsenas, H.P. Hanson: Global ocean current energy assessment: An initial look, Proc. 1st Mar. Energy Technol. Symp. (METS) (2013)
E.P. Chassignet, H.E. Hurlburt, E.J. Metzger, O.M. Smedstad, J. Cummings, G.R. Halliwell, R. Bleck, R. Baraille, A.J. Wallcraft, C. Lozano, H.L. Tolman, A. Srinivasan, S. Hankin, P. Cornillon, R. Weisberg, A. Barth, R. He, F. Werner, J. Wilkin: US GODAE: Global ocean prediction with the hybrid coordinate ocean model (HYCOM), Oceanography 22(2), 64–75 (2009)
N. Maximenko, P. Niiler, M.-H. Rio, O. Melnichenko, L. Centurioni, D. Chambers, V. Zlotnicki, B. Galperin: Mean dynamic topography of the ocean derived from satellite and drifting buoy data using three different techniques, J. Atmos. Oceanic Technol. 26(9), 1910–1919 (2009)
P. Knudsen, R. Bingham, O. Andersen, M.-H. Rio: A global mean dynamic topography and ocean circulation estimation using a preliminary GOCE gravity model, J. Geod. 85, 861–879 (2011)
J.H. VanZwieten Jr., I. Meyer, G.M. Alsenas: Evaluation of HYCOM as a tool for ocean current energy assessment, Proc. 2nd Mar. Energy Technol. Symp. (METS) (2014)
J.H. VanZwieten Jr., W.E. Baxley, G.M. Alsenas, I. Meyer, M. Muglia, C. Lowcher, J. Bane, M. Gabr, R. He, T. Hudon, R. Stevens, A.E.S. Duerr: Ocean current turbine mooring considerations, Proc. Offshore Technol. Conf. (2015), OTC-25965-MS
G. Jeans, L. Harrington-Missin, C. Herry, M. Prevosto, C. Maisondieu, J.A.M. Lima: Deepwater current profile data sources for riser engineering offshore Brazil, Proc. 31st Conf. Ocean Offshore Arct. Eng. (ASME) (2012), OMAE2012-83400
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Dhanak, M.R., Duerr, A.E., VanZwieten, J.H. (2016). Marine Hydrokinetic Energy Resource Assessment. In: Dhanak, M.R., Xiros, N.I. (eds) Springer Handbook of Ocean Engineering. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-16649-0_44
Download citation
DOI: https://doi.org/10.1007/978-3-319-16649-0_44
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-16648-3
Online ISBN: 978-3-319-16649-0
eBook Packages: EngineeringEngineering (R0)