Physical Characteristics of Coastal Hazards

  • Jennifer L. Irish
  • Robert Weiss
  • Donald T. Resio

Abstract

Coastal hazards are among the world’s most threatening hazards. With half of the world’s population living near the coast, an immense threat is posed by these hazards to life and health, livelihood, and the economy. In this chapter, characteristics of coastal hazards are described, first by presenting a historical context, then by laying out our current understanding of the physical problems of interest for coastal design, and finally by presenting simple methods for initial interpretation of the hazard. A number of natural processes and anthropogenic activities adversely impact coastal communities, critical infrastructure, and port facilities along the coast. Natural coastal hazards may generally be classified into those that are episodic and those that occur over long periods of time. Episodic hazards include coastal storms and tsunamis while long-term hazards include, for example, sea-level rise. Many anthropogenic activities also result in long-term impacts at the coast. For example, inland dam construction produces long-term impacts on coastal sediment supply. In the following, we describe the most common coastal hazards and then discuss methods for evaluating their impacts at the coast.

PBL

planetary boundary layer

SLR

sea-level rise

SST

sea-surface-temperature

References

  1. I.M. Cline: Special Report of the Galveston Hurricane of September 8, 1900 (United States Weather Bureau Office, Galveston 1900)Google Scholar
  2. N.L. Frank, S.A. Husain: Deadliest tropical cyclone in history?, Bull. Am. Meteorol. Soc. 52(6), 438–445 (1971)CrossRefGoogle Scholar
  3. G.R. Flierl, A.R. Robinson: Deadly surges in bay of Bengal – Dynamics and storm-tide tables, Nature 239(5369), 213–215 (1972)CrossRefGoogle Scholar
  4. National Oceanic and Atmospheric Administration: NOAA’s top global weather, water and climate events of the 20th century, http://www.noaanews.noaa.gov/stories/images/global.pdf
  5. US Army Corps of Engineers: Performance Evaluation of the New Orleans and Southeast Louisiana Hurricane Protection System, Draft final report of the Interagency Performance Evaluation Task Force (US Army Corps of Engineers, Washington 2006) Google Scholar
  6. N. Lott, T. Ross: Tracking and Evaluating US Billion Dollar Weather Disasters, 1980–2005 (National Climatic Data Center, Asheville 2006), database updated in 2012Google Scholar
  7. E.S. Blake, C.W. Landsea, E.J. Gibney: The Deadliest, Costliest, and Most Intense United States Hurricanes from 1851 to 2010 (and Other Frequently Requested Hurricane Facts), Tech. Memo. NWS, Vol. NHC-6 (NOAA, Miami 2011)Google Scholar
  8. R.H. Simpson: The hurricane disaster-potential scale, Weatherwise 27, 169, 186 (1974) Google Scholar
  9. J.W. East, M.J. Turco, R.R. Mason Jr.: Monitoring inland storm surge and flooding from Hurricane Ike in Texas and Louisiana, September 2008, http://pubs.usgs.gov/of/2008/1365/ (2008), US Geological Survey Open-File Report 2008–1365
  10. P.J. Baxter: The east coast big flood, 31 January–1 February 1953: A summary of the human disaster, Philos. Trans. R. S. Math. Phys. Eng. Sci. 363(1831), 1293–1312 (2005)CrossRefGoogle Scholar
  11. H. Gerritsen: What happened in 1953? – The big flood in the Netherlands in retrospect, Philos. Trans. R. S. A Math. Phys. Eng. Sci. 363(1831), 1271–1291 (2005)CrossRefGoogle Scholar
  12. V.V. Titov, A.B. Rabinovich, J.O. Mofjeld, R.E. Thomson, F.I. Gonzalez: The global reach of the 26 Decemeber 2004 Sumatra tsunami, Science 390, 2045–2048 (2005)CrossRefGoogle Scholar
  13. National Geographic: The deadliest tsunami in history? National Geographic News, January 7, http://news.nationalgeographic.com/news/2004/12/1227_041226_tsunami.html 2005
  14. D.G. Masson, C.B. Harbitz, R.B. Wynn, G. Perdersen, F. Lovholt: Submarine landslides: Processes, triggers and hazard prediction, Phil. Trans. R. Soc. A 364, 2009–2039 (2006)MathSciNetCrossRefGoogle Scholar
  15. C.B. Harbitz, G. Pedersen, B. Gjevik: Numerical simulations of large water waves due to landslides, J. Hydraulic Eng. 119(12), 1325–1342 (1993)CrossRefGoogle Scholar
  16. C.B. Harbitz: Model simulations of tsunamis generated by the Storrega slides, Mar. Geophys. 105, 1–21 (1992)Google Scholar
  17. E.A. Okal: T-waves from the 1998 Papua New Guinea earthquake and its aftershocks: Timing of the tsunamigenic slump, Pure Appl. Geophys. 160, 1843–1863 (2003)CrossRefGoogle Scholar
  18. C.E. Synolakis, J.-P. Bardet, J.C. Borrero, H.L. Davis, E.A. Okal, E.A. Silver, S. Sweet, D.R. Tappin: The slump origin of the 1998 Papua New Guinea tsunami, Proc. Roy. Soc. A 458, 763–789 (2002)CrossRefGoogle Scholar
  19. H.M. Fritz, W.H. Hager, H.-E. Minor: Lituya Bay case: Rockslide impact and wave run-up, Sci. Tsunami Hazard 19(1), 3–22 (2001)Google Scholar
  20. R. Weiss, H.M. Fritz, K. Wuennemann: Hybrid modeling of the mega tsunami run-up in Lituya Bay after half a century, Geophys. Res. Lett. 36, L09609 (2009)Google Scholar
  21. G.J. Fryer, P. Watts, L.F. Pratson: Source of the great tsunami of 1 April 1946: A landslide in the upper Aleutian forearc, Mar. Geol. 203, 201–218 (2004)CrossRefGoogle Scholar
  22. F. Raichlen, C. Synolakis: Waves and runup generated by a three-dimensional sliding mass. In: Submarine Mass Movements and Their Consequences, Advances in Natural and Technological Hazards Research, ed. by J. Locat, J. Mienert, L. Boisvert (Kluwer, Dordrecht 2003) pp. 113–119Google Scholar
  23. R. Weiss, C.E. Synolakis, J. O’Shay: Initial waves from deformable submarine landslides, Proc. NSF CMMI Eng. Res. Innov. Conf. (2011)Google Scholar
  24. R. Weiss, K. Wuennemann: Large waves caused by oceanic impacts of meteorites. In: Tsunamis and Nonlinear Waves, ed. by A. Kundu (Springer, Heiderlberg 2007) pp. 235–260Google Scholar
  25. K. Wuennemann, R. Weiss, K. Hofmann: Characteristics of impact-induced large waves – Re-evaluation of the tsunami hazard, Meteorit. Planet. Sci. 72, 1–11 (2007)Google Scholar
  26. G. Pararas-Carayamis: Near-field and far-field effects of tsunami generated by the paroxysmal eruption, explosions, caldera collapses and massive slope failures of the Krakatay volcano in Indonesia on August 26–27 1883, Sci. Tsunami Hazard 21(4), 191–201 (2003)Google Scholar
  27. S.N. Ward, S.J. Day: Cumbre Vieja volcano – Potential collapse and tsunami at La Palma, Canary Islands, Geophys. Res. Lett. 28, 397–400 (2001)CrossRefGoogle Scholar
  28. S.N. Ward: Planetary cratering: A probabilistic approach, J. Geophys. Res. 107(E40), 7-1–7-11 (2002)Google Scholar
  29. R.B. Baldwin: On the history of lunar cratering: The absolute scale and the origin of planetesimals, Icarus 14, 36–52 (1971)CrossRefGoogle Scholar
  30. Intergovernmental Panel on Climate Change: Intergovernmental Panel on Climate Change Fourth Assessment Report Working Group 1 Report: The Physical Science Basis (Cambridge Univ. Press, Cambridge 2007) Google Scholar
  31. N.J. White, J.A. Church, J.M. Gregory: Coastal and global averaged sea level rise for 1950 to 2000, Geophys, Res. Lett. 32, L01601 (2005)Google Scholar
  32. L. Miller, B.C. Douglas: Mass and volume contributions to twentieth-century global sea level rise, Nature 428(6981), 406–409 (2004)CrossRefGoogle Scholar
  33. S. Jevrejeva, J.C. Moore, A. Grinsted: How will sea level respond to changes in natural and anthropogenic forcings by 2100?, Geophys. Res. Lett. 37, L07703 (2010)CrossRefGoogle Scholar
  34. M. Vermeer, S. Rahmstorf: Global sea level linked to global temperature, Proc. Natl. Acad. Sci. USA 106(51), 21527–21532 (2009)CrossRefGoogle Scholar
  35. W.T. Pfeffer, J.T. Harper, S. O’Neel: Kinematic constraints on glacier contributions to 21st-century sea-level rise, Science 321(5894), 1340–1343 (2008)CrossRefGoogle Scholar
  36. R. Horton, C. Herweijer, C. Rosenzweig, J.P. Liu, V. Gornitz, A.C. Ruane: Sea level rise projections for current generation CGCMs based on the semi-empirical method, Geophys. Res. Lett. 35(2), L02715 (2008)CrossRefGoogle Scholar
  37. R.E. Flick, J.F. Murray, L.C. Ewing: Trends in United States tidal datum statistics and tide range, J. Waterw. Port Coast. Ocean Eng. 129(4), 155–164 (2003)CrossRefGoogle Scholar
  38. L.R. Kleinosky, B. Yarnal, A. Fisher: Vulnerability of Hampton Roads, Virginia to storm-surge flooding and sea-level rise, Nat. Hazards 40(1), 43–70 (2007)CrossRefGoogle Scholar
  39. P. Kirshen, K. Knee, M. Ruth: Climate change and coastal flooding in Metro Boston: Impacts and adaptation strategies, Clim. Change 90(4), 453–473 (2008)CrossRefGoogle Scholar
  40. D.R. Cayan, P.D. Bromirski, K. Hayhoe, M. Tyree, M.D. Dettinger, R.E. Flick: Climate change projections of sea level extremes along the California coast, Clim. Change 87, S57–S73 (2008)CrossRefGoogle Scholar
  41. P. Ruggiero, P.D. Komar, J.C. Allan: Increasing wave heights and extreme value projections: The wave climate of the US Pacific Northwest, Coast. Eng. 57(5), 539–552 (2010)CrossRefGoogle Scholar
  42. S.J. Holgate, A. Matthews, P.L. Woodworth, L.J. Rickards, M.E. Tamisiea, E. Bradshaw, P.R. Foden, K.M. Gordon, S. Jevrejeva, J. Pugh: New data systems and products at the permanent service for mean sea level, J. Coastal Res. 29(3), 493–504 (2013)CrossRefGoogle Scholar
  43. J.B. Elsner, J.P. Kossin, T.H. Jagger: The increasing intensity of the strongest tropical cyclones, Nature 455(7209), 92–95 (2008)CrossRefGoogle Scholar
  44. K. Emanuel, R. Sundararajan, J. Williams: Hurricanes and global warming – Results from downscaling IPCC AR4 simulations, Bull. Am. Meteorol. Soc. 89(3), 347–367 (2008)CrossRefGoogle Scholar
  45. T.R. Knutson, R.E. Tuleya: Impact of COOpen image in new window-induced warming on simulated hurricane intensity and precipitation: Sensitivity to the choice of climate model and convective parameterization, J. Clim. 17(18), 3477–3495 (2004)CrossRefGoogle Scholar
  46. G.A. Vecchi, B.J. Soden: Effect of remote sea surface temperature change on tropical cyclone potential intensity, Nature 450(7172), 1066–1070 (2007)CrossRefGoogle Scholar
  47. P.J. Webster, G.J. Holland, J.A. Curry, H.R. Chang: Changes in tropical cyclone number, duration, and intensity in a warming environment, Science 309(5742), 1844–1846 (2005)CrossRefGoogle Scholar
  48. T.R. Knutson, J.L. McBride, J. Chan, K. Emanuel, G. Holland, C. Landsea, I. Held, J.P. Kossin, A.K. Srivastava, M. Sugi: Tropical cyclones and climate change, Nat. Geosci. 3(3), 157–163 (2010)CrossRefGoogle Scholar
  49. G.J. Holland, P.J. Webster: Heightened tropical cyclone activity in the North Atlantic: Natural variability or climate trend?, Philos. Trans. R. Soc. A Math. Phys. Eng, Sci. 365(1860), 2695–2716 (2007)Google Scholar
  50. M.E. Mann, T.A. Sabbatelli, U. Neu: Evidence for a modest undercount bias in early historical Atlantic tropical cyclone counts, Geophys. Res. Lett. 34(22), L22707 (2007)CrossRefGoogle Scholar
  51. M.A. Bender, T.R. Knutson, R.E. Tuleya, J.J. Sirutis, G.A. Vecchi, S.T. Garner, I.M. Held: Modeled impact of anthropogenic warming on the frequency of intense atlantic hurricanes, Science 327(5964), 454–458 (2010)CrossRefGoogle Scholar
  52. A. Ali: Vulnerability of Bangladesh to climate change and sea level rise through tropical cyclones and storm surges, Water Air Soil Pollut. 92(1/2), 171–179 (1996)Google Scholar
  53. A. Ali: Climate change impacts and adaptation assessment in Bangladesh, Clim. Res. 12(2/3), 109–116 (1999)CrossRefGoogle Scholar
  54. J.A. Lowe, J.M. Gregory, R.A. Flather: Changes in the occurrence of storm surges around the United Kingdom under a future climate scenario using a dynamic storm surge model driven by the Hadley Centre climate models, Clim. Dyn. 18(3/4), 179–188 (2001)CrossRefGoogle Scholar
  55. M. Danard, A. Munro, T. Murty: Storm surge hazard in Canada, Nat. Hazards 28(2/3), 407–431 (2003)CrossRefGoogle Scholar
  56. G. Gonnert: Maximum storm surge curve due to global warming for the European North Sea Region during the 20th–21st century, Nat. Hazards 32(2), 211–218 (2004)CrossRefGoogle Scholar
  57. M.E. Mousavi, J.L. Irish, A.E. Frey, F. Olivera, B.L. Edge: Global warming and hurricanes: The potential impact of hurricane intensification and sea level rise on coastal flooding, Clim. Change 104(3/4), 575–597 (2011)CrossRefGoogle Scholar
  58. N. Lin, K. Emanuel, M. Oppenheimer, E. Vanmarcke: Physically based assessment of hurricane surge threat under climate change, Nat. Clim. Change 2(6), 462–467 (2012)CrossRefGoogle Scholar
  59. P. Bruun: Sea level rise as a cause of shore erosion, J. Waterw. Harb. Div. 88(1-3), 117–130 (1962)Google Scholar
  60. K.Q. Zhang, B.C. Douglas, S.P. Leatherman: Global warming and coastal erosion, Clim. Change 64(1/2), 41–58 (2004)CrossRefGoogle Scholar
  61. J.L. Irish, A.E. Frey, J.D. Rosati, F. Olivera, L.M. Dunkin, J.M. Kaihatu, C.M. Ferreira, B.L. Edge: Potential implications of global warming and barrier island degradation on future hurricane inundation, property damages, and population impacted, Ocean Coast Manag. 53(10), 645–657 (2010)CrossRefGoogle Scholar
  62. A.E. Frey, F. Olivera, J.L. Irish, L.M. Dunkin, J.M. Kaihatu, C.M. Ferreira, B.L. Edge: Potential impact of climate change on hurricane flooding inundation, population affected and property damages in Corpus Christi, J. Am. Water. Resour. Assoc. 46(5), 1049–1059 (2010)CrossRefGoogle Scholar
  63. A.J. Condon, Y.P. Sheng: Evaluation of coastal inundation hazard for present and future climates, Nat. Hazards 62(2), 345–373 (2012)CrossRefGoogle Scholar
  64. P.C. Kerr, J.J. Westerink, J.C. Dietrich, R.C. Martyr, S. Tanaka, D.T. Resio, J.M. Smith, H.J. Westerink, L.G. Westerink, T. Wamsley, M. van Ledden, W. de Jong: Surge generation mechanisms in the lower Mississippi River and discharge dependency, J. Waterw. Port Coast. Ocean Eng. 139(4), 326–335 (2013)CrossRefGoogle Scholar
  65. E. Fussell: Constructing New Orleans, constructing race: A population history of New Orleans, J. Am. Hist. 94, 846–855 (2007)CrossRefGoogle Scholar
  66. O.T. Magoon, B.L. Edge, K.E. Stone: The impact of anthropogenic activities on coastal erosion, Int. Conf. Coast. Eng. (2000) pp. 3934–3940Google Scholar
  67. L.R. Martin: Regional Sediment Management: Background and Overview of Initial Implementation (US Army Corps of Engineers Institute for Water Resources, Washington 2002)Google Scholar
  68. R. Camilli, C.M. Reddy, D.R. Yoerger, B.A.S. Van Mooy, M.V. Jakuba, J.C. Kinsey, C.P. McIntyre, S.P. Sylva, J.V. Maloney: Tracking hydrocarbon plume transport and biodegradation at deepwater horizon, Science 330(6001), 201–204 (2010)CrossRefGoogle Scholar
  69. M.D. Powell, S. Murillo, P. Dodge, E. Uhlhorn, J. Gamache, V. Cardone, A. Cox, S. Otero, N. Carrasco, B. Annane, R.St. Fleur: Reconstruction of Hurricane Katrina’s wind fields for storm surge and wave hindcasting, Ocean Eng. 37(1), 26–36 (2010)CrossRefGoogle Scholar
  70. M.D. Powell, S.H. Houston: Surface wind fields of 1995 Hurricanes Erin, Opal, Luis, Marilyn, and Roxanne at landfall, Mon. Weather Rev. 126(5), 1259–1273 (1998)CrossRefGoogle Scholar
  71. V.J. Cardone, A.J. Broccoli, C.V. Greenwood, J.A. Greenwood: Error characteristics of extratropical-storm wind fields specified from historical data, J. Petrol Technol. 32(5), 872–880 (1980)CrossRefGoogle Scholar
  72. G.J. Holland: Tropical cyclone structure in the Southwest Pacific, Bull. Am. Meteorol. Soc. 61(9), 1132–1132 (1980)Google Scholar
  73. E.F. Thompson, V.J. Cardone: Practical modeling of hurricane surface wind fields, J. Waterw. Port Coast. Ocean Eng. 122(4), 195–205 (1996)CrossRefGoogle Scholar
  74. P.J. Vickery, D. Wadhera, M.D. Powell, Y.Z. Chen: A hurricane boundary layer and wind field model for use in engineering applications, J. Appl. Meteorol. Clim. 48(2), 381–405 (2009)CrossRefGoogle Scholar
  75. H.E. Willoughby, R.W.R. Darling, M.E. Rahn: Parametric representation of the primary hurricane vortex. Part II: A new family of sectionally continuous profiles, Mon. Weather Rev. 134(4), 1102–1120 (2006)CrossRefGoogle Scholar
  76. National Oceanic and Atmospheric Administration: Hurricane Sandy advisory archive, http://www.nhc.noaa.gov/archive/2012/SANDY.shtml?
  77. M.D. Powell, T.A. Reinhold: Tropical cyclone destructive potential by integrated kinetic energy, Bull. Am. Meteorol. Soc. 87, 513–526 (2007)CrossRefGoogle Scholar
  78. I.R. Young: Parametric hurricane wave prediction model, J. Waterw. Port Coast. Ocean Eng. 114(5), 637–652 (1988)CrossRefGoogle Scholar
  79. V.S. Kumar, S. Mandal, K.A. Kumar: Estimation of wind speed and wave height during cyclones, Ocean Eng. 30(17), 2239–2253 (2003)CrossRefGoogle Scholar
  80. J.K. Panigrahi, S.K. Misra: Numerical hindcast of extreme waves, Nat. Hazards 53(2), 361–374 (2010)CrossRefGoogle Scholar
  81. K. Hasselmann, T.P. Barnett, E. Bouws, H. Carlson, D.E. Cartwright: Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP), Ergänz. Dtsch. Hydrogr. Z. A 8(12) (1973) Google Scholar
  82. S.A. Tayor: Parameterization of Maximum Waveheights Forced by Hurricanes: Application to Corpus Christi, Texas, Master Thesis (Texas AM University, Texas 2012)Google Scholar
  83. J.H.G.M. Alves, H.L. Tolman, Y.Y. Chao: Forecasting hurricane-generated wind waves at NOAA/NCEP. JCOMM Tech. Rep. 29, WMO/TD-No 1319 (2004)Google Scholar
  84. J.C. Dietrich, M. Zijlema, J.J. Westerink, L.H. Holthuijsen, C. Dawson, R.A. Luettich, R.E. Jensen, J.M. Smith, G.S. Stelling, G.W. Stone: Modeling hurricane waves and storm surge using integrally-coupled, scalable computations, Coast. Eng. 58(1), 45–65 (2011)CrossRefGoogle Scholar
  85. R.H. Weisberg, L.Y. Zheng: Hurricane storm surge simulations for Tampa Bay, Estuaries Coasts 29(6), 899–913 (2006)CrossRefGoogle Scholar
  86. D.T. Resio, J.J. Westerink: Modeling the physics of storm surges, Phys. Today 61, 33–38 (2008)CrossRefGoogle Scholar
  87. A.B. Kennedy, U. Gravois, B.C. Zachry, J.J. Westerink, M.E. Hope, J.C. Dietrich, M.D. Powell, A.T. Cox, R.A. Luettich, R.G. Dean: Origin of the Hurricane Ike forerunner surge, Geophys. Res. Lett. 38, L08608 (2011)CrossRefGoogle Scholar
  88. J.L. Irish, D.T. Resio: A hydrodynamics-based surge scale for hurricanes, Ocean Eng. 37(1), 69–81 (2010)CrossRefGoogle Scholar
  89. J.L. Irish, D.T. Resio, J.J. Ratcliff: The influence of storm size on hurricane surge, J. Phys. Oceanogr. 38(9), 2003–2013 (2008)CrossRefGoogle Scholar
  90. J. Norman: Katrina’s dead. Sun Herald, A1, A8-9 17 February 2006Google Scholar
  91. R.A. Hoover: Empirical relationships of the central pressure in hurricanes to the maximum surge and storm tide, Mon. Weather Rev. 85, 167–174 (1957)CrossRefGoogle Scholar
  92. W.C. Conner, R.H. Kraft, D.L. Harris: Empirical methods for forecasting the maximum storm tide due to hurricanes and other tropical storms, Mon. Weather Rev. 85, 113–116 (1957)CrossRefGoogle Scholar
  93. Y.K. Song, J.L. Irish, I.E. Udoh: Regional attributes of hurricane surge response functions for hazard assessment, Nat. Hazards 64(2), 1475–1490 (2013)CrossRefGoogle Scholar
  94. J.L. Rego, C.Y. Li: On the importance of the forward speed of hurricanes in storm surge forecasting: A numerical study, Geophys. Res. Lett. 36, L07609 (2009)CrossRefGoogle Scholar
  95. A.W. Niedoroda, D.T. Resio, G.R. Toro, D. Divoky, H.S. Das, C.W. Reed: Analysis of the coastal Mississippi storm surge hazard, Ocean Eng. 37(1), 82–90 (2010)CrossRefGoogle Scholar
  96. C.E. Synolakis, L. Kong: Runup measurements of the December 2004 Indian Ocean tsunami, Earthq. Spectra 22(S3), S67–S91 (2006)CrossRefGoogle Scholar
  97. S. Tadepalli, C.E. Synolakis: The run-up of N-waves on sloping beaches, Proc. R. Soc. A 445, 99–112 (1994)CrossRefMATHGoogle Scholar
  98. Y. Wei, E.N. Bernard, L. Tank, R. Weiss, V.V. Titov, C. Moore, M. Spillane, M. Hopkins, U. Kanoglu: Real-time experimental forecast of the Peruvian tsunami of August 2007 for US coastlines, Geophys, Res. Lett. 35, L04609 (2008)Google Scholar
  99. C.E. Synolakis: The Runup of Long Waves, Ph.D. Thesis (California Institute of Technology, Pasadena 1986)MATHGoogle Scholar
  100. C.E. Synolakis: The runup of solitary waves, J. Fluid Mech. 185, 523–545 (1987)MathSciNetCrossRefMATHGoogle Scholar
  101. S. Tadepalli, C.E. Synolakis: Model for the leading waves of tsunamis, Phys. Rev. Lett. 77(10), 2141–2144 (1996)CrossRefGoogle Scholar
  102. P.A. Madsen, D.R. Fuhrman, H. Schaeffer: On the solitary wave paradigm for tsunamis, J. Geophys. Res. 113, L12012 (2008)CrossRefGoogle Scholar
  103. E.A. Okal, C.E. Synolakis: Source discriminants for near-field tsunamis, Geophys. J. Int. 158, 899–912 (2004)CrossRefGoogle Scholar
  104. H. Galbraith, R. Jones, R. Park, J. Clough, S. Herrod-Julius, B. Harrington, G. Page: Global climate change and sea level rise: Potential losses of intertidal habitat for shorebirds, Waterbirds 25(2), 173–183 (2002)CrossRefGoogle Scholar
  105. D.M. Alongi: Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change, Estuar. Coast. Shelf Sci. 76(1), 1–13 (2008)CrossRefGoogle Scholar
  106. C. Craft, J. Clough, J. Ehman, S. Joye, R. Park, S. Pennings, H.Y. Guo, M. Machmuller: Forecasting the effects of accelerated sea-level rise on tidal marsh ecosystem services, Front. Ecol. Environ. 7(2), 73–78 (2009)CrossRefGoogle Scholar
  107. M.L. Chu-Agor, R. Munoz-Carpena, G. Kiker, A. Emanuelsson, I. Linkov: Exploring vulnerability of coastal habitats to sea level rise through global sensitivity and uncertainty analyses, Environ. Model. Softw. 26(5), 593–604 (2011)CrossRefGoogle Scholar
  108. D. Elliot: Saltwater from Gulf invades Mississippi River, http://www.npr.org/2012/08/21/159567048/saltwater-invades-mississippi-river (2012)
  109. L.T. Dauer, P. Zanzonico, R.M. Tuttle, D.M. Quinn, H.W. Strauss: The Japanese tsunami and resulting nuclear emergency at the Fukushima Daiichi power facility: Technical, radiologic, and response perspectives, J. Nucl. Med. 52(9), 1423–1432 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jennifer L. Irish
    • 1
  • Robert Weiss
    • 2
  • Donald T. Resio
    • 3
  1. 1.Dep. Civil and Environmental EngineeringVirginia TechBlacksburgUSA
  2. 2.Dep. GeosciencesVirginia TechBlacksburgUSA
  3. 3.Dep. Civil EngineeringUniversity of North FloridaJacksonvilleUSA

Personalised recommendations