Skip to main content

Rules of the Road for Unmanned Marine Vehicles

  • Chapter
Book cover Springer Handbook of Ocean Engineering

Part of the book series: Springer Handbooks ((SHB))

Abstract

The growing use of unmanned marine vehicles (GlossaryTerm

UMV

s) demands safe and reliable operation in order to assure acceptance and integration into public water space. By looking at the evolution of unmanned aerial vehicles (GlossaryTerm

UAV

s) and unmanned ground vehicles (GlossaryTerm

UGV

s) and examining the existing legal structure related to safe maritime operations, we explore the path ahead for UMVs. The existing COLREGS (rules of the road) for marine vessel operation may be undergoing modifications in order to accommodate UMVs, while simultaneously, designers of UMVs are working on developing advanced autonomy behaviors that exhibit human-like on-water performance by UMVs. This paper presents a snapshot of the rapidly changing field of UMV operation, with particular focus on software technology shaping higher level autonomy behavior and on the legal landscape providing the framework for acceptable operation in public water space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AIS:

automatic identification system

CARACaS:

control architecture for robotic agent command and sensing

HOV:

high-occupancy vehicle

IvP:

interval programming

MOOS:

mission oriented operating suite

RHIB:

rigid hull inflatable boat

SCOUT:

surface craft for oceanographic and unmanned testing

UAV:

unmanned aerial vehicle

UGV:

unmanned ground vehicles

UMVS:

unmanned maritime vehicle system

UMV:

unmanned marine vehicle

VO:

velocity obstacle

References

  • International Maritime Organization: Convention on the International Regulations for Preventing Collisions at Sea (COLREGS) (IMO, London 1972)

    Google Scholar 

  • T. Huntsberger, H. Aghazarian, A. Howard, D. Trotz: Stereo vision based navigation for autonomous surface vessels, J. Field Robotics 28(1), 3–18 (2011)

    Article  Google Scholar 

  • T. Huntsberger, G. Woodward: Intelligent autonomy for unmanned surface and underwater vehicles, Proc. OCEANS (2011) pp. 1–10

    Google Scholar 

  • M.T. Wolf, C. Assad, Y. Kuwata, A. Howard, H. Aghazarian, D. Zhu, T. Lu, A. Trebi-Ollennu, T. Huntsberger: 360-degree visual detection and target tracking on an autonomous maritime patrol vessel, J. Field Robotics 27(6), 818–838 (2010)

    Article  Google Scholar 

  • Y. Kuwata, M. Wolf, D. Zarzhitsky, T. Huntsberger: Safe maritime navigation with COLREGS, using velocity obstacles, IEEE J. Ocean Eng. 39(1), 110–119 (2014)

    Article  Google Scholar 

  • Y. Kuwata, M. Wolf, D. Zarzhitsky, T. Huntsberger: Safe maritime navigation with COLREGS using velocity obstacles, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2011) pp. 3728–4734

    Google Scholar 

  • M. Benjamin, J. Curcio, J. Leonard, P. Newman: A method for protocol-based COLREGS collision avoidance navigation between unmanned marine surface craft, J. Field Robotics 23(5), 333–346 (2006)

    Article  Google Scholar 

  • P.M. Newman: MOOS – A Mission Oriented Operating Suite, Tech. Rep. OE2003-07 (MIT Department of Ocean Engineering, Cambridge 2003)

    Google Scholar 

  • M. Benjamin, H. Schmidt, P. Newman, J. Leonard: Nested autonomy for unmanned marine vehicles with MOOS-IvP, J. Field Robotics 27(6), 834–875 (2010)

    Article  Google Scholar 

  • M. Benjamin: Multi-objective helming with interval programming on autonomous marine vehicles, Proc. IEEE/RJS IROS 2006 Workshop Multi-Objective Robotics (IROS-MOR 2006) (2006)

    Google Scholar 

  • L. Elkins, D. Sellers, W.R. Monach: The autonomous maritime navigation (AMN) project: Field tests, autonomous and cooperative behaviors, data fusion, sensors, and vehicles, J. Field Robotics 27(6), 790–818 (2010)

    Article  Google Scholar 

  • M. Benjamin, J. Curcio, J. Leonard, P. Newman: Protocol-based COLREGS collision avoidance navigation between unmanned marine surface craft, J. Field Robotics 23(5), 333–346 (2006)

    Article  Google Scholar 

  • J. Curcio, J. Leonard, A. Patrikalakis: SCOUT – a low cost autonomous surface platform for research in cooperative autonomy, MTS/IEEE Proc. OCEANS (2005) pp. 725–729

    Google Scholar 

  • M. Benjamin, H. Schmidt: Massachusetts Institute of Technology Graduate Level Course 2.S998, Marine Autonomy, Sensing and Communications, 2012.

    Google Scholar 

  • PUBLIC LAW 112–95–FEB. 14, 2012, 112th Congress, 126 Stat 72, Title III, Unmanned Aircraft Systems, Section 332, Integration of civil unmanned aircraft systems into national airspace system.

    Google Scholar 

  • Next Generation Air Transportation System, Joint Planning and Development Office: NextGen UAS Research Development and Demonstration Roadmap, Version 1.0 (JPDO, Washington 2012)

    Google Scholar 

  • Department of Defense: Unmanned Systems Integrated Roadmap FY2011-2036 (2011)

    Google Scholar 

  • D.J. Bederman: The future of maritime law in the federal courts: A faculty colloquium, J. Mar. L. Commer. 31, 189 (2000)

    Google Scholar 

  • 1 U.S.C.S. §3 (2006) (definition of ‘‘vessel’’)

    Google Scholar 

  • 28 U.S.T. 3459 (Oct. 20, 1972)

    Google Scholar 

  • 2 American Jurisprudence 2d §4, Admiralty p. 722

    Google Scholar 

  • 2 American Jurisprudence2d §33, Admiralty p. 740

    Google Scholar 

  • 70 American Jurisprudence 2d edition, shipping, p. 456

    Google Scholar 

  • American Jurisprudence2d §33 p. 740

    Google Scholar 

  • M. Benjamin, J. Curcio: COLREGS-Based Navigation of Autonomous Underwater Marine Vehicles, Proc. Inst. Electrical Electronics Eng. (IEEE) Conf. Autonomous Unmanned Vehicles (1994) pp. 32–39

    Google Scholar 

  • C.H. Allen: The seabots are coming here: Should they be treated as vessels?, J. Navig. 65, 749–752 (2012)

    Article  Google Scholar 

  • A.H. Henderson: Murky waters: The legal status of unmanned undersea vehicles, Naval Law Review 53, 55–72 (2006)

    Google Scholar 

  • Code of Federal Regulations, Title 33, Chapter 1, Sub-chapter E, Part 83, Subpart A, Section 83.03, General Definitions (Rule 3g).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph A. Curcio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Curcio, J.A. (2016). Rules of the Road for Unmanned Marine Vehicles. In: Dhanak, M.R., Xiros, N.I. (eds) Springer Handbook of Ocean Engineering. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-16649-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16649-0_23

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16648-3

  • Online ISBN: 978-3-319-16649-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics