Skip to main content

Part of the book series: Universitext ((UTX))

Abstract

The interconnections and coupling patterns of dynamical systems are best described in terms of graph theory. This chapter serves the purpose of summarizing the main results and tools from matrix analysis and graph theory that will be important for the analysis of interconnected systems in subsequent chapters. This includes a proof of the Perron–Frobenius theorem for irreducible nonnegative matrices using a contraction mapping principle on convex cones due to Birkhoff (1957). We introduce adjacency matrices and Laplacians associated to a weighted directed graph and study their spectral properties. The analysis of eigenvalues and eigenvectors for graph adjacency matrices and Laplacians is the subject of spectral graph theory, which is briefly summarized in this chapter; see the book by Godsil and Royle (2001) for a comprehensive presentation. Explicit formulas for the eigenvalues and eigenvectors of Laplacians are derived for special types of graphs such as cycles and paths. These formulas will be used later on, in Chapter 9, in an examination of homogeneous networks. The technique of graph compression is briefly discussed owing to its relevance for the model reduction of networks. Properties of graphs are increasingly important for applications to, for example, formation control and molecular geometry. Therefore, a brief section is included on graph rigidity and the characterization of Euclidean distance matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • B.D.O. Anderson, C. Yu, S. Dasgupta and A.S. Morse, “Control of a three-coleader formation in the plane”, Syst. Control Lett., vol. 56, (2007), 573–578.

    Article  MATH  MathSciNet  Google Scholar 

  • L. Asimov and B. Roth, “The rigidity of graphs”, Trans. Am. Math. Soc., vol. 245, (1978), 279–289.

    Article  Google Scholar 

  • G. Birkhoff, “Extensions of Jentzsch’s Theorem”, Trans. Am. Math. Soc., vol. 85, (1957), 219–227.

    MATH  MathSciNet  Google Scholar 

  • L.M. Blumenthal, Theory and Applications of Distance Geometry, Cambridge University Press, Cambridge, UK, 1953.

    MATH  Google Scholar 

  • S. Boyd, P. Diaconis and L. Xiao, “Fastest mixing Markov chain on a graph”, SIAM Review, vol. 46 (4), (2004), 667–689.

    Google Scholar 

  • F. Bullo, J. Cortés and S. Martínez, Distributed Control of Robotic Networks, Princeton University Press, Applied Mathematics Series, 2009.

    Book  MATH  Google Scholar 

  • P.J. Bushell, “The Cayley–Hilbert metric and positive operators”, Linear Algebra Appl., vol. 84, (1986), 271–280.

    Article  MATH  MathSciNet  Google Scholar 

  • R. Connelly, “Rigidity”, Ch. 1.7 of Handbook of Convex Geometry, Vol. A, (Ed. P. M. Gruber and J. M. Wills), Amsterdam, Netherlands: North-Holland, pp. 223–271, 1993.

    Google Scholar 

  • G.M. Crippen and T.F. Havel, Distance Geometry and Molecular Conformation, J. Wiley and Sons, New York, 1988.

    Google Scholar 

  • D. Cvetkovic, P. Rowlinson and S. Simic, An Introduction to the Theory of Graph Spectra, London Math. Soc. Student Texts 75, Cambridge University Press, Cambridge, UK, 2010.

    Google Scholar 

  • P. J. Davis, Circulant Matrices, Wiley, New York, 1979.

    MATH  Google Scholar 

  • F. Doerfler and F. Bullo, “Kron reduction of graphs with applications to electrical networks”, IEEE Trans. Circuits Syst. I, Reg. Papers, vol 60 (1), (2013), 150–163.

    Google Scholar 

  • F. Doerfler and B. Francis, “Geometric analysis of the formation problem for autonomous robots”, IEEE Trans. Autom. Control, vol. 55 (2010), 2379–2384.

    Article  Google Scholar 

  • A.W.M. Dress and T.F. Havel, “Distance geometry and geometric algebra”, Foundations of Physics, vol. 23(10), (1993), 1357–1374.

    Google Scholar 

  • M. Fiedler, Special Matrices and Their Applications in Numerical Mathematics, Dover Publ. Inc., Mineola, NY, 2008.

    MATH  Google Scholar 

  • W. Fulton, “Eigenvalues, invariant factors, highest weights, and Schubert calculus”, Bull. Am. Math. Soc., vol. 37, (2000), 209–249.

    Article  MATH  MathSciNet  Google Scholar 

  • F.R. Gantmacher, The Theory of Matrices, 2 vols., Chelsea, 1959.

    Google Scholar 

  • C.D. Godsil and G. Royle, Algebraic Graph Theory, Springer, New York, 2001.

    Book  MATH  Google Scholar 

  • J.C. Gower, “Properties of Euclidean and non-Euclidean distance matrices”, Linear Algebra Appl., vol. 67, (1985), 81–97.

    Article  MATH  MathSciNet  Google Scholar 

  • U. Grenander and G. Szegö, Toeplitz Forms and Their Applications, University of California Press, Berkeley and Los Angeles, 1958.

    MATH  Google Scholar 

  • T.F. Havel and K. Wüthrich, “An evaluation of the combined use of nuclear magnetic resonance and distance geometry for the determination of protein conformations in solution”, J. Mol. Biol., vol. 182, (1985), 281–294.

    Article  Google Scholar 

  • U. Helmke and J.B. Moore, Optimization and Dynamical Systems, Springer-Verlag, London, 1994.

    Book  Google Scholar 

  • U. Helmke and J. Rosenthal, “Eigenvalue inequalities and the Schubert calculus”, Math. Nachrichten, vol. 171, (1995), 207–225.

    Article  MATH  MathSciNet  Google Scholar 

  • L. Henneberg, Die graphische Statik der starren Systeme, B.G. Teubner, Leipzig, 1911.

    MATH  Google Scholar 

  • R.A. Horn and C.R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, UK, 1990.

    MATH  Google Scholar 

  • R.A. Horn, N.H. Rhee and W. So, “Eigenvalue inequalities and equalities”, Linear Algebra Appl., vol. 270, (1998), 29–44.

    Article  MATH  MathSciNet  Google Scholar 

  • B. Huppert, Angewandte Linear Algebra, DeGruyter, Berlin, 1990.

    Book  MATH  Google Scholar 

  • R. Jentzsch, “Über Integraloperatoren mit positivem Kern”, Crelle J. Math., vol. 141, (1912), 235–244.

    MATH  MathSciNet  Google Scholar 

  • E. Kohlberg and J.W. Pratt, “The contraction mapping approach to the Perron–Frobenius theory: Why Hilbert’s metric?”, Mathematics for Operations Research, vol. 7 (2), (1982), 198–210.

    Google Scholar 

  • I. Kra and S.R. Simanca, “On circulant matrices”, Notices of the Am. Math. Society, vol. 59, (2012), 368–377.

    Article  MATH  MathSciNet  Google Scholar 

  • M.G. Krein and M.A. Rutman, “Linear operators leaving invariant a cone in a Banach space” Transl. Am. Math. Soc. Ser. 1, vol. 10, (1950), 199–325.

    Google Scholar 

  • M.A. Krasnoselskii, Positive Solutions of Operator Equations, Noordhoff, Groningen, 1964.

    Google Scholar 

  • G. Laman, “On graphs and the rigidity of plane skeletal structures”, J. Engineering Mathematics, vol. 4, (1970), 331–340.

    Article  MATH  MathSciNet  Google Scholar 

  • M. Meshbahi and M. Egerstedt, Graph Theoretic Methods for Multiagent Networks, Princeton University Press, Princeton, NJ, 2010.

    Book  Google Scholar 

  • R. Olfati-Saber, J.A. Fax and R.M. Murray, “Consensus and cooperation in networked multi-agent systems”, Proc. IEEE, vol. 95, (2007), 215–233.

    Article  Google Scholar 

  • G. Ottaviani and B. Sturmfels, “Matrices with eigenvectors in a given subspace”, Proc. Am. Math. Soc. 141(4), (2013), 1219–1232,

    Article  MATH  MathSciNet  Google Scholar 

  • B.N. Parlett and W.G. Poole, “A geometric theory for the QR, LU and power iterations”, SIAM J. Numer. Analysis, vol. 10, (1973), 389–412.

    Article  MATH  MathSciNet  Google Scholar 

  • M. Pollicot and M. Yuri, Dynamical Systems and Ergodic Theory, London Math. Soc. Student Texts 40, Cambridge University press, Cambridge, U.K., 1998.

    Google Scholar 

  • I.J. Schoenberg, “Remarks to Maurice Frechet’s article: Sur la definition axiomatique d’une classe d’espaces vectoriels distancies applicables vectoriellement sur l’espace de Hilbert” Ann. Math., vol. 36, (1935), 724–732.

    Google Scholar 

  • E. Seneta, Non-negative matrices and Markov chains. 2nd rev. ed., XVI, Softcover Springer Series in Statistics, 1981.

    Google Scholar 

  • S. Sternberg, Dynamical Systems, Dover Publications, Mineola, NY, 2010.

    MATH  Google Scholar 

  • A.R. Willms, “Analytic results for the eigenvalues of certain tridiagonal matrices”, SIAM J. Matrix Anal. Appl., vol. 30, (2008), 639–656.

    Article  MATH  MathSciNet  Google Scholar 

  • L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging”, Syst. Control Lett., vol. 53, (2004), 65–78.

    Article  MATH  MathSciNet  Google Scholar 

  • W.-C. Yueh, “Eigenvalues of several tridiagonal matrices”, Applied Mathematics E-Notes, vol. 5, (2005), 66–74.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fuhrmann, P.A., Helmke, U. (2015). Nonnegative Matrices and Graph Theory. In: The Mathematics of Networks of Linear Systems. Universitext. Springer, Cham. https://doi.org/10.1007/978-3-319-16646-9_8

Download citation

Publish with us

Policies and ethics