Skip to main content

Diffusion Coefficient for the Disordered Harmonic Chain Perturbed by an Energy Conserving Noise

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 129))

Abstract

We investigate the macroscopic behavior of the disordered harmonic chain of oscillators, through energy diffusion. The hamiltonian dynamics of the disordered system is perturbed by a degenerate conservative noise. After rescaling space and time diffusively, energy fluctuations in equilibrium evolve according to a linear heat equation (Simon, Equilibrium fluctuations for the disordered harmonic chain perturbed by an energy conserving noise, 2013). Here we concentrate on the diffusion coefficient, given by the non-gradient Varadhan’s approach, and equivalently defined through the Green-Kubo formula. We compare the two approaches and investigate the convergence of the diffusion coefficient in a vanishing noise limit.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Simon, M.: Equilibrium fluctuations for the disordered harmonic chain perturbed by an energy conserving noise, eprint arXiv:1402.3617 (2014)

  2. Casher, A., Lebowitz, J.L.: Heat flow in regular and disordered harmonic chains. J. Math. Phys. 12(8), 1701–1711 (1971)

    Article  Google Scholar 

  3. Dhar, A.: Heat conduction in the disordered harmonic chain revisited. Phys. Rev. Lett. 86(26), 5882–5885 (2001)

    Article  Google Scholar 

  4. Ajanki, O., Huveneers, F.: Rigorous scaling law for the heat current in disordered harmonic chain. Commun. Math. Phys. 301(3), 841–883 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  5. Faggionato, A., Martinelli, F.: Hydrodynamic limit of a disordered lattice gas. Prob. Theory Relat. Fields 127(4), 535–608 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Jara, M., Landim, C.: Quenched non-equilibrium central limit theorem for a tagged particle in the exclusion process with bond disorder. Ann. Inst. Henri Poincaré Probab. Stat. 44(2), 341–361 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Mourragui, M., Orlandi, E.: Lattice gas model in random medium and open boundaries: hydrodynamic and relaxation to the steady state. J. Stat. Phys. 136(4), 685–714 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Quastel, J.: Bulk diffusion in a system with site disorder. Ann. Probab. 34(5), 1990–2036 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Varadhan, S.R.S.: Nonlinear diffusion limit for a system with nearest neighbor interactions. II, Asymptotic problems in probability theory: stochastic models and diffusions on fractals. Pitman Res. Notes Math. Ser. 283, 75–128 (1993)

    MathSciNet  Google Scholar 

  10. Komoriya, K.: Hydrodynamic limit for asymmetric mean zero exclusion processes with speed change. Ann. Inst. H. Poincaré Probab. Stat. 34(6), 767–797 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bernardin, C.: Thermal conductivity for a noisy disordered harmonic chain. J. Stat. Phys. 133(3), 417–433 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bernardin, C., Huveneers, F.: Small perturbation of a disordered harmonic chain by a noise and an anharmonic potential. Probab. Theory Relat. Fields 157(1–2), 301–331 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dhar, A., Kannan, V., Lebowitz, J.L.: Heat conduction in disordered harmonic lattices with energy conserving noise. Phys. Rev. E 83, 021108 (2011)

    Google Scholar 

  14. Simon, M.: Hydrodynamic limit for the velocity-flip model. Stoch. Processes Appl. 123, 3623–3662 (2013)

    Google Scholar 

  15. Landim, C., Yau, H.T.: Fluctuation-dissipation equation of asymmetric simple exclusion processes. Probab. Theory Relat. Fields 108, 321–356 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kipnis, L., Landim, C.: Scaling limits of interacting particle systems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (1999)

    Google Scholar 

  17. Sasada, M.: Hydrodynamic limit for exclusion processes with velocity. Markov Process. Relat. Fields 17(3), 391–428 (2011)

    MATH  MathSciNet  Google Scholar 

  18. Bernardin, C., Stoltz, G.: Anomalous diffusion for a class of systems with two conserved quantities. Nonlinearity 25, 1099–1133 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ethier, S.N., Kurtz, T.G.: Markov processes. Wiley Series in Probability and Mathematical Statistics. Wiley, New York (1986)

    Book  MATH  Google Scholar 

  20. Komorowski, T., Landim, C., Olla, S.: Fluctuations in Markov processes. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer (2012)

    Google Scholar 

  21. Olla, S., Sasada, M.: Macroscopic energy diffusion for a chain of anharmonic oscillators, eprint arXiv:1109.5297v3 (2013)

  22. Benabou, G.: Homogenization of Ornstein-Uhlenbeck process in random environment. Commun. Math. Phys. 266(3), 699–714 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kipnis, C., Varadhan, S.R.S.: Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions. Commun. Math. Phys. 104, 1–19 (1986)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This problem was suggested by Cédric Bernardin, and I am grateful to him for helpful and valuable remarks. I warmly thank Makiko Sasada and Stefano Olla for their interest and constructive discussions on this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marielle Simon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Simon, M. (2015). Diffusion Coefficient for the Disordered Harmonic Chain Perturbed by an Energy Conserving Noise. In: Gonçalves, P., Soares, A. (eds) From Particle Systems to Partial Differential Equations II. Springer Proceedings in Mathematics & Statistics, vol 129. Springer, Cham. https://doi.org/10.1007/978-3-319-16637-7_14

Download citation

Publish with us

Policies and ethics