Skip to main content

A Simple Stochastic Algorithm for Structural Features Learning

  • Conference paper
  • First Online:
Book cover Computer Vision - ACCV 2014 Workshops (ACCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9010))

Included in the following conference series:

  • 1341 Accesses

Abstract

A conceptually very simple unsupervised algorithm for learning structure in the form of a hierarchical probabilistic model is described in this paper. The proposed probabilistic model can easily work with any type of image primitives such as edge segments, non-max-suppressed filter set responses, texels, distinct image regions, SIFT features, etc., and is even capable of modelling non-rigid and/or visually variable objects. The model has recursive form and consists of sets of simple and gradually growing sub-models that are shared and learned individually in layers. The proposed probabilistic framework enables to exactly compute the probability of presence of a certain model, regardless on which layer it actually is. All these learned models constitute a rich set of independent structure elements of variable complexity that can be used as features in various recognition tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Training and classification of same object classes in different datasets.

  2. 2.

    For the sake of clarity, the unnecessary indices are ommited.

  3. 3.

    The grouping is actually generated randomly.

References

  1. Tsotsos, J.K.: Analyzing vision at the complexity level. Behav. Brain Sci. 13, 423–445 (1990)

    Article  Google Scholar 

  2. Bienenstock, E., Geman, S., Potter, D.: Compositionality, MDL priors, and object recognition. In: Mozer, M., Jordan, M.I., Petsche, T. (eds.) NIPS, pp. 838–844. MIT Press, Cambridge (1996)

    Google Scholar 

  3. Fukushima, K.: Neocognitron: a hierarchical neural network capable of visual pattern recognition. Neural Netw. 1, 119–130 (1988)

    Article  Google Scholar 

  4. Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., Poggio, T.: Robust object recognition with cortex-like mechanisms. IEEE Trans. Pattern Anal. Mach. Intell. 29, 411–426 (2007)

    Article  Google Scholar 

  5. Zhu, S.C., Mumford, D.: A stochastic grammar of images. Found. Trends. Comput. Graph. Vis. 2, 259–362 (2006)

    Article  MATH  Google Scholar 

  6. Zhu, L., Chen, Y., Yuille, A.L.: Learning a hierarchical deformable template for rapid deformable object parsing. IEEE Trans. Pattern Anal. Mach. Intell. 32, 1029–1043 (2010)

    Article  Google Scholar 

  7. Si, Z., Zhu, S.C.: Learning and-or templates for object recognition and detection. IEEE Trans. Pattern Anal. Mach. Intell. 35, 2189–2205 (2013)

    Article  Google Scholar 

  8. Lee, H., Grosse, R., Ranganath, R., Ng, A.Y.: Unsupervised learning of hierarchical representations with convolutional deep belief networks. Commun. ACM 54, 95–103 (2011)

    Article  Google Scholar 

  9. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Pereira, F., Burges, C., Bottou, L., Weinberger, K. (eds.) Advances in Neural Information Processing Systems 25, pp. 1097–1105. Curran Associates, Inc., Red Hook (2012)

    Google Scholar 

  10. Hinton, G.E., Osindero, S.: A fast learning algorithm for deep belief nets. Neural Comput. 18, 1527–1554 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dai, J., Hong, Y., Hu, W., Zhu, S.C., Wu, Y.N.: Unsupervised learning of dictionaries of hierarchical compositional models. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014)

    Google Scholar 

  12. Grünwald, P.D.: The Minimum Description Length Principle. MIT Press, Cambridge (2007)

    Google Scholar 

  13. Fidler, S., Berginc, G., Leonardis, A.: Hierarchical statistical learning of generic parts of object structure. In: Proceedings of the IEEE conference of CVPR, pp. 182–189 (2006)

    Google Scholar 

  14. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann Publishers Inc., San Francisco (1988)

    Google Scholar 

  15. Fidler, S., Leonardis, A.: Towards scalable representations of object categories: learning a hierarchy of parts. In: Proceedings of the IEEE conference of CVPR (2007)

    Google Scholar 

  16. Zhu, L(.L)., Lin, C., Huang, H., Chen, Y., Yuille, A.L.: Unsupervised structure learning: hierarchical recursive composition, suspicious coincidence and competitive exclusion. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 759–773. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  17. Si, Z., Zhu, S.C.: Learning hybrid image templates (HIT) by information projection. IEEE Trans. Pattern Anal. Mach. Intell. 34, 1354–1367 (2012)

    Article  Google Scholar 

Download references

Acknowledgement

The authors were supported by the Czech Science Foundation under the Project P103/12/1578.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Mačák .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Mačák, J., Drbohlav, O. (2015). A Simple Stochastic Algorithm for Structural Features Learning. In: Jawahar, C., Shan, S. (eds) Computer Vision - ACCV 2014 Workshops. ACCV 2014. Lecture Notes in Computer Science(), vol 9010. Springer, Cham. https://doi.org/10.1007/978-3-319-16634-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16634-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16633-9

  • Online ISBN: 978-3-319-16634-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics