Skip to main content

Full-Body Human Pose Estimation from Monocular Video Sequence via Multi-dimensional Boosting Regression

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9010))

Abstract

In this work, we propose a scheme to estimate two-dimensional full-body human poses in a monocular video sequence. For each frame in the video, we detect the human region using a support vector machine, and estimate the full-body human pose in the detected region using multi-dimensional boosting regression. For the human pose estimation, we design a joints relationship tree, corresponding to the full hierarchical structure of joints in a human body. Further, we make a complete set of spatial and temporal feature descriptors for each frame. Utilizing the well-designed joints relationship tree and feature descriptors, we learn a hierarchy of regressors in the training stage and employ the learned regressors to determine all the joint’s positions in the testing stage. As experimentally demonstrated, the proposed scheme achieves outstanding estimation performance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hara, K., Chellappa, R.: Computationally efficient regression on a dependency graph for human pose estimation. In: Computer Vision and Pattern Recognition, pp. 3390–3397 (2013)

    Google Scholar 

  2. Moeslund, T.B., Hilton, A., Krüger, V.: A survey of advances in vision-based human motion capture and analysis. Comput. Vis. Image Underst. 104, 90–126 (2006)

    Article  Google Scholar 

  3. Poppe, R.: Vision-based human motion analysis: an overview. Comput. Vis. Image Underst. 108, 4–18 (2007)

    Article  Google Scholar 

  4. Felzenszwalb, P.F., Huttenlocher, D.P.: Pictorial structures for object recognition. Int. J. Comput. Vis. 61, 55–79 (2005)

    Article  Google Scholar 

  5. Eichner, M., Marin-Jimenez, M., Zisserman, A., Ferrari, V.: 2d articulated human pose estimation and retrieval in (almost) unconstrained still images. Int. J. Comput. Vis. 99, 190–214 (2012)

    Article  MathSciNet  Google Scholar 

  6. Andriluka, M., Roth, S., Schiele, B.: Pictorial structures revisited: people detection and articulated pose estimation. In: Computer Vision and Pattern Recognition, pp. 1014–1021 (2009)

    Google Scholar 

  7. Sapp, B., Jordan, C., Taskar, B.: Adaptive pose priors for pictorial structures. In: Computer Vision and Pattern Recognition, pp.422–429 (2010)

    Google Scholar 

  8. Dantone, M., Gall, J., Leistner, C., Van Gool, L.: Human pose estimation using body parts dependent joint regressors. In: Computer Vision and Pattern Recognition, pp.3041–3048 (2013)

    Google Scholar 

  9. Pishchulin, L., Andriluka, M., Gehler, P., Schiele, B.: Strong appearance and expressive spatial models for human pose estimation. In: The IEEE International Conference on Computer Vision, pp. 3487–3494 (2013)

    Google Scholar 

  10. Zuffi, S., Freifeld, O.,Black, M.J.: From pictorial structures to deformable structures. In: Computer Vision and Pattern Recognition, pp. 3546–3553 (2012)

    Google Scholar 

  11. Zuffi, S., Romero, J., Schmid, C., Black, M.J.: Estimating human pose with flowing puppets. In: The IEEE International Conference on Computer Vision, pp. 3312–3319 (2013)

    Google Scholar 

  12. Sapp, B., Toshev, A., Taskar, B.: Cascaded models for articulated pose estimation. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part II. LNCS, vol. 6312, pp. 406–420. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  13. Okada, R., Soatto, S.: Relevant feature selection for human pose estimation and localization in cluttered images. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 434–445. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Girshick, R., Shotton, J., Kohli, P., Criminisi, A., Fitzgibbon, A.: Efficient regression of general-activity human poses from depth images. In: The IEEE International Conference on Computer Vision, pp. 415–422 (2011)

    Google Scholar 

  15. Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., Blake, A.: Real-time human pose recognition in parts from single depth images. In: Computer Vision and Pattern Recognition, pp. 1297–1304 (2011)

    Google Scholar 

  16. Shotton, J., Sharp, T., Kipman, A., Fitzgibbon, A., Finocchio, M., Blake, A., Cook, M., Moore, R.: Real-time human pose recognition in parts from single depth images. Commun. ACM 56, 116–124 (2013)

    Article  Google Scholar 

  17. Sun, M., Kohli, P., Shotton, J.: Conditional regression forests for human pose estimation. In: Computer Vision and Pattern Recognition, pp. 3394–3401 (2012)

    Google Scholar 

  18. Bissacco, A., Yang, M.H., Soatto, S.: Fast human pose estimation using appearance and motion via multi-dimensional boosting regression. In: Computer Vision and Pattern Recognition, pp. 1–8 (2007)

    Google Scholar 

  19. Pang, Y., Yuan, Y., Li, X., Pan, J.: Efiicient HOG human detection. Sign. Process. 91, 773–781 (2011)

    Article  MATH  Google Scholar 

  20. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Computer Vision and Pattern Recognition, pp. 886–893 (2005)

    Google Scholar 

  21. Lucas, B.D., Kanade, T., et al.: An iterative image registration technique with an application to stereo vision. IJCAI 81, 674–679 (1981)

    Google Scholar 

  22. Ferrari, V., Marin-Jimenez, M., Zisserman, A.: Progressive search space reduction for human pose estimation. In: Computer Vision and Pattern Recognition, pp. 1–8 (2008)

    Google Scholar 

  23. Yang, Y., Ramanan, D.: Articulated pose estimation with flexible mixtures-of-parts. In: Computer Vision and Pattern Recognition, pp. 1385–1392 (2011)

    Google Scholar 

Download references

Acknowledgement

This work is partially supported by Shandong Provincial Natural Science Foundation, China (Grant No. ZR2011FZ004), the National Natural Science Foundation of China (Grants No. 61472223, U1035004 and 61303083), the Scientific Research Foundation for the Excellent Middle-Aged and Youth Scientists of Shandong Province of China (Grant No. BS2011DX017) and the Program for New Century Excellent Talents in University (NCET) in China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Du, Y., Huang, Y., Peng, J. (2015). Full-Body Human Pose Estimation from Monocular Video Sequence via Multi-dimensional Boosting Regression. In: Jawahar, C., Shan, S. (eds) Computer Vision - ACCV 2014 Workshops. ACCV 2014. Lecture Notes in Computer Science(), vol 9010. Springer, Cham. https://doi.org/10.1007/978-3-319-16634-6_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16634-6_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16633-9

  • Online ISBN: 978-3-319-16634-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics