Skip to main content

Global Volumetric Image Registration Using Local Linear Property of Image Manifold

  • Conference paper
  • First Online:
Computer Vision - ACCV 2014 Workshops (ACCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9008))

Included in the following conference series:

Abstract

We propose a three-dimensional global image registration method for a sparse dictionary. To achieve robust and accurate registration, which based on template matching, a large number of transformed images are prepared and stored in the dictionary. To reduce the spatial complexity of this image dictionary, we introduce a method of generating a new template image from a collection of images stored in the image dictionary. This generated template image allows us to achieve accurate image registration even if the population of the image dictionary is relatively small and the template has a small pattern perturbation. To further reduce the complexity, we compute a matching process in a low-dimensional Euclidean space projected by a random projection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nishino, K., Ikeuchi, K.: Robust Simultaneous Registration of Multiple Range Images. In: Digitally Archiving Cultural Objects, pp. 71–88. Springer, New York (2008)

    Google Scholar 

  2. Salvi, J., Matabosch, C., Fofi, D., Forest, J.: A review of recent range image registration methods with accuracy evaluation. Image Vis. Comput. 25, 578–596 (2007)

    Article  Google Scholar 

  3. Besl, P., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans. Pattern Analy. Mach. Intell. 14, 239–256 (1992)

    Article  Google Scholar 

  4. Daniel, F.H., Hebert, M.: Fully automatic registration of multiple 3D data sets. Image Vis. Comput. 21, 637–650 (2003)

    Article  Google Scholar 

  5. Markelj, P., Tomaẑevič, D., Likar, B., Pernus, F.: A review of 3D/2D registration methods for image-guided interventions. Med. Image Anal. 16, 642–661 (2012)

    Article  Google Scholar 

  6. Klein, A., Andersson, J., Ardekani, B.A., Ashburner, J., Avants, B.B., Chiang, M.C., Christensen, G.E., Collins, D.L., Gee, J.C., Hellier, P., Song, J.H., Jenkinson, M., Lepage, C., Rueckert, D., Thompson, P.M., Vercauteren, T., Woods, R.P., Mann, J.J., Parsey, R.V.: Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. NeuroImage 46, 786–802 (2009)

    Article  Google Scholar 

  7. Capekm, M.: Optimisation strategies applied to global similarity based image registration methods. In: Proceedings of the 7th International Congerence in Central Europoe on Computer Graphic, pp. 369–374 (1999)

    Google Scholar 

  8. Itoh, H., Lu, S., Sakai, T., Imiya, A.: Global image registration by fast random projection. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Wang, S., Kyungnam, K., Benes, B., Moreland, K., Borst, C., Di Verdi, S., Yi-Jen, C., Ming, J. (eds.) ISVC 2011, Part I. LNCS, vol. 6938, pp. 23–32. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Itoh, H., Lu, S., Sakai, T., Imiya, A.: Interpolation of reference images in sparse dictionary for global image registration. In Proceedings of the 8th International Symposium on Visual Computing, pp. 657–667 (2012)

    Google Scholar 

  10. Itoh, H., Sakai, T., Kawamoto, K., Imiya, A.: Global image registration using random projection and local linear method. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds.) CAIP 2013, Part I. LNCS, vol. 8047, pp. 564–571. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Cock, K.D., Moor, B.D.: Subspace angles between ARMA models. Syst. Control Lett. 46, 265–270 (2002)

    Article  MATH  Google Scholar 

  12. Hamm, J., Lee, D.D.: Grassmann discriminant analysis: a unifying view on subspace-based learning. In: Proceedings of the International Conference on Machine Learning, pp. 376–383 (2008)

    Google Scholar 

  13. Altman, N.S.: An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 46, 175–185 (1992)

    MathSciNet  Google Scholar 

  14. Vempala, S.S.: The Random Projection Method, vol. 65. American Mathematical Society, Providence (2004)

    MATH  Google Scholar 

  15. Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.Y.: An optimal algorithm for approximate nearest neighbor searching in fixed dimensions. In Proceedings of ACM-SIAM Symposium on Discrete Algorithms, pp. 573–582 (1994)

    Google Scholar 

  16. Baraniuk, R.G., Wakin, M.B.: Random projections of smooth manifolds. Found. Comput. Math. 9, 51–77 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Bingham, E., Mannila, H.: Random projection in dimensionality reduction: applications to image and text data. In: Proceedings of the International Conference on Knowledge Discovery and Data Mining, pp. 245–250 (2001)

    Google Scholar 

  18. Johnson, W., Lindenstrauss, J.: Extensions of Lipschitz maps into a Hilbert space. Contemp. Math. 26, 189–206 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  19. Frankl, P., Maehara, H.: The Johnson-Lindenstrauss lemma and the sphericity of some graphs. Comb. Theory Ser. B 44, 355–362 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  20. Sakai, T., Imiya, A.: Practical algorithms of spectral clustering: toward large-scale vision-based motion analysis. In: Wang, L., Zhao, G., Cheng, L., Pietikäinen, M. (eds.) Machine Learning for Vision-Based Motion Analysis, pp. 3–26. Springer, London (2011)

    Chapter  Google Scholar 

  21. Cocosco, C., Kollokian, V., Kwan, R.S., Evans, A.: Brainweb. Online interface to a 3D MRI simulated brain database. NeuroImage 5, 425 (1997)

    Google Scholar 

  22. Boye, D., Samei, G., Schmidt, J., Székely, G., Tanner, C.: Population based modeling of respiratory lung motion and prediction from partial information. In: Proceedings of SPIE, vol. 8669, Medical Imaging 2013: Image Processing 8669 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hayato Itoh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Itoh, H., Imiya, A., Sakai, T. (2015). Global Volumetric Image Registration Using Local Linear Property of Image Manifold. In: Jawahar, C., Shan, S. (eds) Computer Vision - ACCV 2014 Workshops. ACCV 2014. Lecture Notes in Computer Science(), vol 9008. Springer, Cham. https://doi.org/10.1007/978-3-319-16628-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16628-5_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16627-8

  • Online ISBN: 978-3-319-16628-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics