Skip to main content

Part of the book series: Adaptation, Learning, and Optimization ((ALO,volume 19))

  • 2951 Accesses

Abstract

This chapter focuses on a few key applications of hybrid intelligence techniques in the field of feature selection and classification. Hybrid intelligent techniques have been used to develop an effective and generalized learning model for solving these applications. The first application employs a new evolutionary hybrid feature selection technique for microarray datasets, which is implemented in two stages by integrating correlation-based binary particle swarm optimization (BPSO) with rough set algorithm to identify non-redundant genes capable of discerning between all objects. The other applications discussed are for evaluating the relative performance of different supervised classification procedures using hybrid feature reduction techniques. Correlation based Partial Least square hybrid feature selection method is used for feature extraction and the experimental results show that Partial Least Squares (PLS) regression method is an appropriate feature selection method and a combined use of different classification and feature selection approaches make it possible to construct high performance classification models for microarray data. Another hybrid algorithm, Correlation based reduct algorithm (CFS-RST) is used as a filter to eliminate redundant attributes and minimal reduct set is produced by rough sets. This method improves the efficiency and decreases the complexity of the classical algorithm. Extensive experiments are conducted on two public multi-class gene expression datasets and the experimental results show that hybrid intelligent methods are highly effective for selecting discriminative genes for improving the classification accuracy. The experimental results of all the applications indicate that, all the hybrid intelligent techniques discussed here have shown significant improvements in most of the binary and multi-class microarray datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Saeys, Y., Lnza, I., Larrañaga, P.: A review of feature selection techniques in bioinformatics. Bioinformatics 23(19), 2507–2517 (2007)

    Article  Google Scholar 

  2. Somorjai, R.L., Dolenko, B., Baumgartner, R., Crow, J.E., Moore, J.H.: Class prediction and discovery using gene microarray and proteomics mass spectroscopy data: curses, caveats, cautions. Bioinformatics 19, 1484–1491 (2003)

    Article  Google Scholar 

  3. Wang, Y., Makedon, F., Ford, J., Pearlman, J.: Hykgene: a hybrid approach for selecting marker genes for phenotype classification using microarray gene expression data. Bioinformatics 21, 1530–1537 (2005)

    Article  Google Scholar 

  4. Jafari, P., Azuaje, F.: An assessment of recently published gene expression data analyses: reporting experimental design and statistical factors. BMC Med Inform Decis Mak. 6(27) (2006)

    Google Scholar 

  5. Robnik-Šikonja, M., Kononenko, I.: Theoretical and empirical analysis of relieff and rrelieff. Machine Learning 53, 23–69 (2003)

    Article  MATH  Google Scholar 

  6. Su, Y., Murali, T., Pavlovic, V., Schaffer, M., Kasif, S.: Rankgene: identification of diagnostic genes based on expression data. Bioinformatics 19, 1578–1579 (2003)

    Article  Google Scholar 

  7. Kohavi, R., John, G.: Wrapper for feature subset selection. Artificial Intelligence 97, 273–324 (1997)

    Article  MATH  Google Scholar 

  8. Blum, A., Langley, P.: Selection of relevant features and examples in machine learning. Artificial Intelligence 97, 245–271 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Li, L., Weinberg, C., Darden, T., Pedersen, L.: Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method. Bioinformatics 17, 1131–1142 (2001)

    Article  Google Scholar 

  10. Ooi, C., Tan, P.: Genetic algorithms applied to multi-class prediction for the analysis of gene expression data. Bioinformatics 19, 37–44 (2003)

    Article  Google Scholar 

  11. Jirapech-Umpai, T., Aitken, S.: Feature selection and classification for microarray data analysis: Evolutionary methods for identifying predictive genes. BMC Bioinformatics 6(146) (2005)

    Google Scholar 

  12. Liu, J., Cutler, G., Li, W., Pan, Z., Peng, S., Hoey, T., Chen, L., Ling, X.: Multiclass cancer classification and biomarker discovery using GA-based algorithm. Bioinformatics 21, 2691–2697 (2005)

    Article  Google Scholar 

  13. Kudo, M., Sklansky, J.: Comparison of algorithms that select features for pattern classifiers. Pattern Recognition 33, 25–41 (2000)

    Article  Google Scholar 

  14. Kennedy, J., Eberhart, R.C.: Prticle swarm optimization. In: Proceedings of the 1995 IEEE International Conference on Neural Networks, Perth, Australia, vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  15. Kennedy, J., Eberhart, R.: A discrete binary version of the particle swarm algorithm. In: Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, Orlando, FL, USA, vol. 5, pp. 4104–4108 (1997)

    Google Scholar 

  16. Juan, C.: A hybrid of genetic algorithm and particle swarm optimization for recurrent network design. IEEE Transactions on Systems, Man and Cybernetics 34, 997–1006 (2004)

    Article  Google Scholar 

  17. Deng, X.: Research on building crowd evacuation model based on multi-agent particle swarm optimization algorithm. Journal of Convergence Information Technology 8(4), 17–25 (2013)

    Article  Google Scholar 

  18. Quinlan, J.R.: Induction of decision trees. Machine Learning 1, 81–106 (2004)

    Google Scholar 

  19. Quinlan, J.R.: Programs for machine learning. Morgan Kaufmann, CA (1993)

    Google Scholar 

  20. Yang, Y.H., Xiao, Y., Segal, M.R.: Identifying differentially expressed genes from microarray experiments via statistic synthesis. Bioinformatics 21(7), 1084–1093 (2005)

    Article  Google Scholar 

  21. Pawlak, Z.: Rough set approach to knowledge-based decision support. European Journal of Operational Research 99, 48–57 (1997)

    Article  MATH  Google Scholar 

  22. Mitra, S., Hayashi, Y.: Bioinformatics with Soft Computing. IEEE Transactions on Systems, Man and Cybernetics 36(5), 616–635 (2006)

    Article  Google Scholar 

  23. Grzymala-Busse, J.W.: LERS-a system for learning from examples based on rough sets. In: Slowinski, R. (ed.) Intelligent Decision Support, pp. 3–18. Kluwer Academic Publishers, Dordrecht (1992)

    Chapter  Google Scholar 

  24. Dash, S., Patra, B.: Redundant gene selection based on genetic and quick-reduct algorithm. International Journal on Data Mining and Intelligent Information Technology Applications 3(2) (2013)

    Google Scholar 

  25. Dash, S., Patra, B., Ttripathy, B.K.: A hybrid data mining technique for improving the classification accuracy of microarray data set. International Journal of Information Engineering and Electronic Business 2, 43–50 (2012)

    Article  Google Scholar 

  26. Dash, S., Patra, B.: Rough set aided gene selection for cancer classification. In: Proceedings of 7th International Conference on Computer Sciences and Convergence Information Technology. IEEE Xplore, Seoul (2012)

    Google Scholar 

  27. Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11(5), 341–356 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  28. Pawlak, Z.: Rough sets: Theoretical aspects of reasoning about data. Kluwer Academic Publishing, Dordrecht (1991)

    Book  MATH  Google Scholar 

  29. Pawlak, Z.: Rough set approach to knowledge-based decision support. European Journal of Operational Research 99, 48–57 (1997)

    Article  MATH  Google Scholar 

  30. Swiniarski, R.W., Skowron, A.: Rough set methods in feature selection and recognition. Pattern Recognition Letters 24(6), 833–849 (2003)

    Article  MATH  Google Scholar 

  31. Vafaie, H., Imam, I.F.: Feature selection methods: genetic algorithms vs. greedy-like search. In: Proceedings of International Conference on Fuzzy and Intelligent Control Systems (1994)

    Google Scholar 

  32. Kennedy, J., Spears, W.M.: Matching algorithms to problems: An experimental test of the particle swarm and some genetic algorithms on the multimodal problem generator. In: Proceedings of the IEEE International Conference on Evolutionary Computation, pp. 39–43 (1998)

    Google Scholar 

  33. Juan, C.: A hybrid of genetic algorithm and particle swarm optimization for recurrent network design. IEEE Transactions on Systems, Man and Cybernetics 34, 997–1006 (2004)

    Article  Google Scholar 

  34. Jensen, R., Shen, Q.: Semantics-preserving dimensionality reduction: rough and fuzzy-rough based approaches. IEEE Transactions on Knowledge and Data Engineering 16 (12), 1457–1471 (2004)

    Article  Google Scholar 

  35. Hall, M.A.: Correlation-based feature selection for machine learning. Ph.D. Thesis. Department of Computer Science, University of Waikato (1999)

    Google Scholar 

  36. Jensen, R.: Combining rough and fuzzy sets for feature selection. Ph.D. Dissertation. School of Informatics, University of Edinburgh (2004)

    Google Scholar 

  37. Ding, H., Peng, C.: Minimum redundancy feature selection from microarray gene expression data. Journal of Bioinformatics and Computational Biology 3(2), 185–205 (2003)

    Article  Google Scholar 

  38. Wold, H.: Soft modeling: the basic design and some extensions. Systems Under Indirect Observation 2, 1–53 (1982)

    Google Scholar 

  39. Wold, H.: Partial least squares. Encyclopedia of the Statistical Sciences 6, 581–591 (1985)

    Google Scholar 

  40. Wold, S., Ruhe, H., Wold, H., Dunn, W.J.: The collinearity problem in linear regression-The partial least squares (PLS) approach to generalized inverse. SIAM Journal of Scientific and Statistical Computations 5, 735–743 (1984)

    Article  MATH  Google Scholar 

  41. Tan, A.C., Gilbert, D.: Ensemble machine learning on gene expression data for cancer classification. Applied Bioinformatics 2, 575–583 (2003)

    Google Scholar 

  42. Huang, X., Pan, W., Han, X., Chen, Y., Miller, L.W.: Borrowing information from relevant microarray studies for sample classification using weighted partial least squares. Comput. Biol. Chem. 29, 204–211 (2005)

    Article  MATH  Google Scholar 

  43. Cao, K.A., Roussouw, D., Robert-Granie, C., Besse, P.: A Sparse PLS for variable selection when integrating omics data. Statistical Applications in Genetics and Molecular Biology 7 (2008)

    Google Scholar 

  44. Ding, B., Gentleman, R.: Classification using generalized partial least squares. Bioconductor Project (2004)

    Google Scholar 

  45. Fort, G., Lambert-Lacroix, S.: Classification using partial least squares with penalized logistic regression. Bioinformatics 21, 1104–1111 (2005)

    Article  Google Scholar 

  46. Nguyen, D.V., Rocke, D.M.: Tumor classification by partial least squares using microarray gene expression data. Bioinformatics 18, 39–50 (2002)

    Article  Google Scholar 

  47. Wold, H.: Soft modeling: the basic design and some extensions. Systems Under Indirect Observation 2, 1–53 (1982)

    Google Scholar 

  48. De Jong, S.: SIMPLS: an alternative approach to partial least squares regression. Chemometrics and Intelligent Laboratory Systems 2(4), 251–263 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujata Dash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dash, S. (2015). Learning Using Hybrid Intelligence Techniques. In: Acharjya, D., Dehuri, S., Sanyal, S. (eds) Computational Intelligence for Big Data Analysis. Adaptation, Learning, and Optimization, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-16598-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16598-1_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16597-4

  • Online ISBN: 978-3-319-16598-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics