Skip to main content

Smooth and Dynamically Stable Navigation of Multiple Human-Like Robots

  • Chapter
  • First Online:
Book cover Algorithmic Foundations of Robotics XI

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 107))

Abstract

We present a novel algorithm for smooth and collision-free navigation for multiple human-like robots. Our approach combines reciprocal collision avoidance with kinematic and dynamic stability constraints to compute a non-oscillatory trajectory for each high-DOF robot. We use a multi-level optimization algorithm that combines acceleration-velocity obstacles with trajectory optimization. We highlight our algorithm’s performance in different environments containing multiple human-like robots with tens of DOFs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abe, Y., Yoshiki, M.: Collision avoidance method for multiple autonomous mobile agents by implicit cooperation. In: Proceedings. 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 3, pp. 1207–1212. IEEE (2001)

    Google Scholar 

  2. Alonso-Mora, J., Breitenmoser, A., Rufli, M., Beardsley, P., Siegwart, R.: Optimal Reciprocal Collision Avoidance for Multiple Non-holonomic Robots. Springer, Heidelberg (2013)

    Book  Google Scholar 

  3. Arechavaleta, G., Laumond, J.P., Hicheur, H., Berthoz, A.: An optimality principle governing human walking. IEEE Trans. Robot. 24(1), 5–14 (2008)

    Article  Google Scholar 

  4. Berenson, D., Srinivasa, S., Kuffner, J.: Task space regions a framework for pose-constrained manipulation planning. Int. J. Robot. Res. 30(12), 1435–1460 (2011)

    Article  Google Scholar 

  5. Bouyarmane, K., Kheddar, A.: Humanoid robot locomotion and manipulation step planning. Adv. Robot. 26(10), 1099–1126 (2012)

    Article  Google Scholar 

  6. Brock, O., Khatib, O.: Elastic strips: a framework for motion generation in human environments. Int. J. Robot. Res. 21(12), 1031–1052 (2002)

    Article  Google Scholar 

  7. Dai, H., Tedrake, R.: Optimizing robust limit cycles for legged locomotion on unknown terrain. In: IEEE Conference on Decision and Control, pp. 1207–1213 (2012)

    Google Scholar 

  8. Dalibard, S., El Khoury, A., Lamiraux, F., Nakhaei, A., Taıx, M., Laumond, J.P.: Dynamic walking and whole-body motion planning for humanoid robots: an integrated approach. Int. J. Robot. Res. 32(9–10), 1089–1103 (2013)

    Article  Google Scholar 

  9. Fiorini, P., Shiller, Z.: Motion planning in dynamic environments using velocity obstacles. Int. J. Robot. Res. 17(7), 760–772 (1998)

    Article  Google Scholar 

  10. Huang, Q., Yokoi, K., Kajita, S., Kaneko, K., Arai, H., Koyachi, N., Tanie, K.: Planning walking patterns for a biped robot. IEEE Trans. Robot. Autom. 17(3), 280–289 (2001)

    Article  Google Scholar 

  11. Kajita, S., Tani, K.: Study of dynamic biped locomotion on rugged terrain-derivation and application of the linear inverted pendulum mode. In: Proceedings. 1991 IEEE International Conference on Robotics and Automation, pp. 1405–1411. IEEE (1991)

    Google Scholar 

  12. Kalakrishnan, M., Chitta, S., Theodorou, E., Pastor, P., Schaal, S.: STOMP: stochastic trajectory optimization for motion planning. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 4569–4574 (2011)

    Google Scholar 

  13. Kavraki, L., Svestka, P., Latombe, J.C., Overmars, M.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566–580 (1996)

    Article  Google Scholar 

  14. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res. 5(1), 90–98 (1986)

    Article  MathSciNet  Google Scholar 

  15. Kluge, B., Prassler, E.: Reflective navigation: Individual behaviors and group behaviors. In: IEEE International Conference on Robotics and Automation, pp. 4172–4177 (2004)

    Google Scholar 

  16. Kuffner, J., LaValle, S.: RRT-connect: an efficient approach to single-query path planning. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 995–1001 (2000)

    Google Scholar 

  17. LaValle, S.M., Hutchinson, S.A.: Optimal motion planning for multiple robots having independent goals. IEEE Trans. Robot. Autom. 14(6), 912–925 (1998)

    Article  Google Scholar 

  18. Mordatch, I., Todorov, E., Popović, Z.: Discovery of complex behaviors through contact-invariant optimization. ACM Trans. Graph. (TOG) 31(4), 43 (2012)

    Article  Google Scholar 

  19. Park, C., Pan, J., Manocha, D.: ITOMP: incremental trajectory optimization for real-time replanning in dynamic environments. In: Proceedings of International Conference on Automated Planning and Scheduling (2012)

    Google Scholar 

  20. Posa, M., Tedrake, R.: Direct trajectory optimization of rigid body dynamical systems through contact. Algorithmic Foundations of Robotics X, pp. 527–542. Springer, Berlin (2013)

    Chapter  Google Scholar 

  21. Quinlan, S., Khatib, O.: Elastic bands: connecting path planning and control. In: Proceedings of IEEE International Conference on Robotics and Automation, vol. 2, pp. 802–807 (1993)

    Google Scholar 

  22. Ratliff, N., Zucker, M., Bagnell, J.A.D., Srinivasa, S.: CHOMP: gradient optimization techniques for efficient motion planning. In: Proceedings of International Conference on Robotics and Automation, pp. 489–494 (2009)

    Google Scholar 

  23. Sanchez, G., Latombe, J.C.: Using a PRM planner to compare centralized and decoupled planning for multi-robot systems. In: Proceedings of IEEE International Conference on Robotics and Automation, ICRA’02, vol. 2, pp. 2112–2119. IEEE (2002)

    Google Scholar 

  24. Schultz, G., Mombaur, K.: Modeling and optimal control of human-like running. IEEE/ASME Trans. Mechatron. 15(5), 783–792 (2010)

    Article  Google Scholar 

  25. Singh, S., Kapadia, M., Reinman, G., Faloutsos, P.: Footstep navigation for dynamic crowds. Comput. Animat. Virtual Worlds 22(2–3), 151–158 (2011)

    Article  Google Scholar 

  26. Stilman, M.: Global manipulation planning in robot joint space with task constraints. IEEE Trans. Robot. 26(3), 576–584 (2010)

    Article  Google Scholar 

  27. Švestka, P., Overmars, M.H.: Coordinated path planning for multiple robots. Robot. Auton. Syst. 23(3), 125–152 (1998)

    Article  Google Scholar 

  28. Trinkle, J.C., Pang, J.S., Sudarsky, S., Lo, G.: On dynamic multi-rigid-body contact problems with coulomb friction. ZAMM-J. Appl. Math. Mech. 77(4), 267–279 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  29. van den Berg, J., Snape, J., Guy, S.J., Manocha, D.: Reciprocal collision avoidance with acceleration-velocity obstacles. In: IEEE International Conference on Robotics and Automation, pp. 3475–3482. IEEE (2011)

    Google Scholar 

  30. van den Berg, J., Guy, S.J., Lin, M., Manocha, D.: Reciprocal n-body collision avoidance. In: Robotics Research, pp. 3–19. Springer, Heidelberg (2011)

    Google Scholar 

Download references

Acknowledgments

This research is supported in part by ARO Contract W911NF-10-1-0506, NSF awards 1000579, 1117127 and 1305286, and a grant from Sandia Labs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chonhyon Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Park, C., Manocha, D. (2015). Smooth and Dynamically Stable Navigation of Multiple Human-Like Robots. In: Akin, H., Amato, N., Isler, V., van der Stappen, A. (eds) Algorithmic Foundations of Robotics XI. Springer Tracts in Advanced Robotics, vol 107. Springer, Cham. https://doi.org/10.1007/978-3-319-16595-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16595-0_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16594-3

  • Online ISBN: 978-3-319-16595-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics