Skip to main content

Empirical Research—setor sucroenergético in Brazil—From the Experts’ Mouths

  • Chapter
The Sugarcane Complex in Brazil

Part of the book series: Contributions to Economics ((CE))

  • 893 Accesses

Abstract

Initially an explanation is given for how the expert interviews were conducted and structured within this main empirical chapter. The strategy for identifying the experts that were interviewed is elaborated upon the evaluation of the recorded and transcribed interviews by applying qualitative data analysis software is explained followed by a presentation of the reasons for the success of sugarcane over decades and centuries and its significance for the Brazilian agriculture and rural areas. From the initial governmental program Pro-Álcool to the recent crisis of the sugarcane sector the last three decades are explained in more detail. Yet the main focus of Chap. 4 is the empirical analysis of the data compiled. The qualitative data is presented as statements from the expert interviews and then matched with insights, statistical and other data from the literature review. With reference to the innovation system approach there are five ‘physical’ technologies (mechanization; cogeneration; new technologies; second generation biofuels and genetically modified cultivars) that are analyzed in detail. An assessment of the ‘social’ technologies with a national and international perspective (institutions, strategies and politics; laws, regulations and enforcement; industrial cooperation; concentration and internationalization; certification and market demand) follows. Subsequently these technologies and innovations and their interdependencies are evaluated in order to understand whether the sugarcane complex can be classified as an innovation system. The chapter concludes with analysis of the impacts of innovation on ecological, economic and social aspects in order to cover the multi-dimensionality of sustainability.

Brazil’s ethanol and other biofuels are produced in ever-improving conditions

Luiz Inácio Lula da Silva, 64th UN General Assembly, New York, 23 September 2009.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Another Portuguese term which seems more precise than the English wording is usina which refers to the production plant where sugar, ethanol, electricity and other byproducts are produced. The owner of the usina and thus often the proprietor of the sugarcane is referred to as the usineiro. These are two other Portuguese terms that will be referred to subsequently in the text.

  2. 2.

    Prices and numbers indicated in the text and that were given in R$ are converted into US$ for reasons of comparability. The applied exchange rates are listed in Table on page v.

  3. 3.

    According to Fleischer (2014), Central-South Brazil experienced the smallest rainfalls in January 2014 in these regions since 1954. This constitutes a very difficult situation for electricity energy generation. The lack of rainfall has depleted water levels of the main hydropower facilities to such an extent that all thermo-electric capacity (natural gas, fossil oil, biomass, etc.) has been activated. Furthermore, another 5,000 MW was required to be provided by the Tucuruí hydropower station in Pará. But, the outdated transmission lines resulted in a blackout of up to two hours in the Central-South regions, affecting up to 12 million people in 11 states.

    Fleischer (2014) additionally states that it is highly possible that Brazil faces massive blackouts in May, June, and July as happened in 2001 if rainfall does not increase during the “summer rain” months (February, March and April). Concern is expressed that such a disaster might coincide with the World Cup finals in June and July 2014.

  4. 4.

    Nevertheless, some critics indicate that the commercialization of university science threatens the distinct culture, in particular the incentive system of universities which in return shifts the focus of basic research. However, this aspect is not pursued within the context of industrial cooperation and innovation systems and it is not further discussed here.

  5. 5.

    Globally, the four largest traders of and investors in agricultural commodities are Archer Daniels Midland (ADM), Bunge, Cargill (all three US American based companies) and Louis Dreyfus (French). Collectively, they are known as the ‘ABCD’ cartel or traders and control, for instance, as much as 90 % of the global grain trade, according to Murphy et al. (2012).

  6. 6.

    The ‘Cerrado’ is a vast savanna ecoregion and Brazil’s second largest biome after the Amazon rain forest. The ‘Cerrado’ accounts for more than 20 % of the country’s area and can be found particularly within the Center-West and South-West regions of Brazil.

  7. 7.

    The definition of degraded land and degraded pasture is contested and ambiguous. The definition of the UNEP/FAO/GEF Project “Land Degradation Assessment in Drylands (LADA)” is “the reduction in the capacity of the land to provide ecosystem goods and services and assure its functions over a period of time for its beneficiaries” (Kellner et al. 2011). Nevertheless, degraded land and degraded pasture can be in utilization.

  8. 8.

    Apart from the direct emissions, the production of sugar and ethanol often results in high water consumption and the cultivation of large-scale sugarcane monocultures which leads to a pollution of soil and of surface and underground water caused primarily by the application of pesticides and fertilizer that also have a negative impact on the GHG balance of sugarcane ethanol (Azadi et al. 2012). According to Carneiro et al. (2012), the global market for pesticides increased by over 90 % over the last ten years while the Brazilian market grew 190 % within the same period. In 2008, Brazil surpassed the US and became the largest market for pesticides worldwide. In 2011, over 40 % of all purchases in pesticides are coming from the soy bean sector while cotton ranks second with 12.5 %. The sugarcane complex ranks third and buys 11.6 % of all pesticides in Brazil according to the Instituto de Economia Agrícola (2012).

  9. 9.

    Nevertheless, according to Pacini and Silveira (2011), consumers in Brazil do not react as strongly as in other countries to price increases and are more likely to buy ethanol instead of gasoline even when gasoline prices are more favorable. A possible explanation might be that historically ethanol has often been the more advantageous fuel for them.

References

  • Ackrill, R., & Kay, A. (2009). Historical learning in the design of WTO rules: The EC sugar case. World Economy, 32(5), 754–771.

    Google Scholar 

  • Ackrill, R., & Kay, A. (2011). Multiple streams in EU policy-making: The case of the 2005 sugar reform. Journal of European Public Policy, 18(1), 72–89.

    Google Scholar 

  • Adenle, A. A., Haslam, G. E., & Lee, L. (2013). Global assessment of research and development for algae biofuel production and its potential role for sustainable development in developing countries. Energy Policy, 61, 182–195.

    Google Scholar 

  • Almeida, L. F., & Machado Filho, C. A. P. (2013). Sharing competences in strategic alliances: A case study of the Cosan and Shell biofuel venture. Revista de Administração, 48, 359–374.

    Google Scholar 

  • Alves, F. (2006). Por que morrem os cortadores de cana? Saúde e Sociedade, 15(3), 90–98.

    Google Scholar 

  • Amyris. (2013, June 20). Amyris and total announce successful demonstration flight with renewable jet fuel during Paris Air Show. Amyris Press Release.

    Google Scholar 

  • ANFAVEA. (2014). Anuário da Indústria Automobilística Brasileira. Brazilian automotive industry yearbook. São Paulo: Associação Nacional dos Fabricantes de Veículos Automotores—ANFAVEA.

    Google Scholar 

  • ANP. (2013a). Boletim anual de preços—2013—versão preliminar (maio/2013). Rio de Janeiro: Agência Nacional do Petróleo, Gas e Biocombustíveis—ANP.

    Google Scholar 

  • ANP. (2013b). Oil, natural gas and biofuels: Statistical Yearbook 2013. Rio de Janeiro: National Agency of Petroleum, Natural Gas and Biofuels—ANP.

    Google Scholar 

  • Aparecida de Moraes Silva, M., & Martins, R. C. (2010). A degradação social do trabalho e da natureza no contexto da monocultura canavieira paulista. Sociologias, 24, 196–240.

    Google Scholar 

  • Araya-Quesada, M., Craig, W., & Ripandelli, D. (2012). Biosafety of genetically modified organisms in the Latin American and the Caribbean region: Main needs and opportunities for strategic capacity building. AgBioforum, 15(1), 77–88.

    Google Scholar 

  • Arruda, P. (2011). Perspective of the sugarcane industry in Brazil. Tropical Plant Biology, 4(1), 3–8.

    Google Scholar 

  • Arruda, P. (2012). Genetically modified sugarcane for bioenergy generation. Current Opinion in Biotechnology, 23(3), 315–322.

    Google Scholar 

  • Augusto da Costa, A. C., Pereira Junior, N., & Gomes Aranda, D. A. (2010). The situation of biofuels in Brazil: New generation technologies. Renewable and Sustainable Energy Reviews, 14, 3041–3049.

    Google Scholar 

  • Azadi, H., de Jong, S., Derudder, B., De Maeyer, P., & Witlox, F. (2012). Bitter sweet: How sustainable is bio-ethanol production in Brazil? Renewable and Sustainable Energy Reviews, 16(6), 3599–3603.

    Google Scholar 

  • Azania, M., Alberto, C., Rossini, L., Adriano, R. C., Perecin, D., & Padua, A. (2013). The use of glyphosate in sugarcane: A Brazilian experience. In A. J. Price & J. A. Kelton (Eds.), Herbicides—Current research and case studies in use. Croatia: InTech.

    Google Scholar 

  • Bajay, S. V. (2011). Food, fuels, electricity and materials from sugarcane in Brazil: Costs, benefits and challenges. International Journal of Environmental Studies, 68(2), 145–159.

    Google Scholar 

  • Bajay, S. V., Horta Nogueira, L. A., & Rocha de Souza, F. J. (2009). O momento de aperfeiçoar o marco regulatório para os biocombustíveis. In O. Pilagallo (Ed.), Etanol e Bioelectricidade: A cana-de-açúcar no futuro da matriz energética (pp. 40–43). São Paulo: UNICA—União da Indústria de Cana-de-açúcar.

    Google Scholar 

  • Barros, S. (2013). Brazil. Biofuels annual. Annual report 2013. GAIN Report. US Department of Agriculture—USDA

    Google Scholar 

  • Batista, F. (2014). BNDES eleva a R$ 6,9 bi desembolso a usinas. Novacanacom

    Google Scholar 

  • Benbrook, C. (2009). Critical issue report: The first thirteen years. Washington: The Organic Center.

    Google Scholar 

  • Berdegué, J. A., Fuentealba, R. (2011). Latin America: The state of smallholders in agriculture. Paper presented at the IFAD Conference on New Directions for Smallholder Agriculture. 24–25 January, 2011, Rome.

    Google Scholar 

  • Bergmann, J. C., Tupinambá, D. D., Costa, O. Y. A., Almeida, J. R. M., Barreto, C. C., & Quirino, B. F. (2013). Biodiesel production in Brazil and alternative biomass feedstocks. Renewable and Sustainable Energy Reviews, 21, 411–420.

    Google Scholar 

  • Bitsch, V. (2001). Qualitative research in agricultural economics: Paradigm, purposes and evaluation criteria. Paper presented at the American Agricultural Economics Association Annual Meeting, Chicago, IL.

    Google Scholar 

  • Bizzo, W. A., Lenço, P. C., Carvalho, D. J., & Veiga, J. P. S. (2014). The generation of residual biomass during the production of bio-ethanol from sugarcane, its characterization and its use in energy production. Renewable and Sustainable Energy Reviews, 29, 589–603.

    Google Scholar 

  • BNDES. (2008). Sugarcane-based bioethanol: Energy for sustainable development. Rio de Janeiro: Banco Nacional de Desenvolvimento Econômico e Social—BNDES.

    Google Scholar 

  • BNDES. (2012). Annual report 2011. Rio de Janeiro: Banco Nacional de Desenvolvimento Econômico e Social—BNDES.

    Google Scholar 

  • BNDES. (2013). Annual report 2012. Rio de Janeiro: Banco Nacional de Desenvolvimento Econômico e Social—BNDES.

    Google Scholar 

  • BNEF. (2012). Moving towards a next generation ethanol economy. NY: Bloomberg New Energy Finance.

    Google Scholar 

  • BNEF. (2013). Mind the gap: Brazil’s looming transport fuel shortage. White Paper. Bloomberg New Energy Finance—BNEF

    Google Scholar 

  • Bogner, A., & Menz, W. (2009). Das theoriegeneriende Experteninterview. Erkenntnisinteresse, Wissensformen, Interaktion. In A. Bogner, B. Littig, & W. Menz (Eds.), Experteninterviews. Theorien, Methoden, Anwendungsfelder. Wiesbaden: Verlag für Sozialwissenschaften.

    Google Scholar 

  • Borges, U., Freitag, H., Hurtienne, T., & Nitsch, M. (1984). Proalcool: Analyse und Evaluierung des brasilianischen Biotreibstoffprogramms. Spektrum—Berliner Reihe zu Gesellschaft, Wirtschaft und Politik in Entwicklungsländern. Saarbrücken: Breitenbach.

    Google Scholar 

  • Borges, U., Freitag, H., Hurtienne, T., & Nitsch, M. (1988). Proálcool. Economia política e avaliação sócio-econômica do programa brasileiro de biocombustíveis. Aracaju, Sergipe: Programa Editorial da UFS.

    Google Scholar 

  • Borlina Filho, V. (2013). Petrobras faz 1a. transferência no alcoolduto Ribeirão Preto-Paulínia. São Paulo: Folha de São Paulo.

    Google Scholar 

  • Bos-Brouwers, H. E. J. (2010). Corporate sustainability and innovation in SMEs: Evidence of themes and activities in practice. Business Strategy and the Environment, 19(7), 417–435.

    Google Scholar 

  • Brazilian Bioethanol Science and Technology Laboratory—CTBE. (2010). Alcoolduto: 80 mil caminhões a menos nas rodovias por ano. Notícias.

    Google Scholar 

  • Bryman, A. (2004). Social research methods. Oxford: Oxford University Press.

    Google Scholar 

  • Buckeridge, M. S., De Souza, A. P., Arundale, R. A., Anderson-Teixeira, K. J., & DeLucia, E. (2012). Ethanol from sugarcane in Brazil: A midway’ strategy for increasing ethanol production while maximizing environmental benefits. GCB Bioenergy, 4(2), 119–126.

    Google Scholar 

  • Busch, A. (2010). Wirtschaftsmacht Brasilien (Der grüner Riese erwacht, Vol. 1040). Bonn: Bundeszentrale für politische Bildung.

    Google Scholar 

  • Callenius, C., & Mari, F. (2012). Grenzen der Zertifizierung. Rundbrief Forum Umwelt & Entwicklung, 02, 2–6.

    Google Scholar 

  • Cannavam Ripoli, T. C., & Romanelli, T. L. (2009). An overview on sugarcane planting and harvesting. In M. A. B. Regitano d’Arce, T. M. Ferreira de Souza Vieira, & T. L. Romanelli (Eds.), Agroenergy and sustainability (Vol. 153–169). São Paulo: Edusp.

    Google Scholar 

  • Capaz, R. S., Carvalho, V. S. B., & Nogueira, L. A. H. (2013). Impact of mechanization and previous burning reduction on GHG emissions of sugarcane harvesting operations in Brazil. Applied Energy, 102, 220–228.

    Google Scholar 

  • Carneiro, F. F., Pignati, W., Rigotto, R. M., Augusto, L. G. S., Rizollo, A., Muller, N. M., Alexandre, V. P., Friedrich, K., & Mello, M. S. C. (2012). Dossiê ABRASCO: Um alerta sobre os impactos dos agrotóxicos na saúde. Rio de Janeiro: Associação Brasileira de Saúde Coletiva—ABRASCO.

    Google Scholar 

  • Cassuto, D. N., & Gueiros, C. (2013). The evolution of the Brazilian regulation of ethanol and possible lessons for the United States. Wisconsin International Law Journal, 30, 477–498.

    Google Scholar 

  • Cavalcanti, M. (2011). Tributação relative etanol-gasolina no Brasil: Competitividade dos combustíveis, arrecadação do estado e internalização de custos de carbono (PhD Thesis, Universidade Federal do Rio de Janeiro).

    Google Scholar 

  • Cazzola, P., Morrison, G., Kaneko, H., Cuenot, F., Ghandi, A., & Fulton, L. (2013). Production costs of alternative transportation fuels. Influence of crude oil price and technology maturity. Paris: International Energy Agency—IEA.

    Google Scholar 

  • Cerqueira Leite, R. C., Verde Leal, M. R. L., Barbosa Cortez, L. A., Griffin, W. M., & Gaya Scandiffio, M. I. (2009). Can Brazil replace 5 % of the 2025 gasoline world demand with ethanol? Energy, 34(5), 655–661.

    Google Scholar 

  • CGEE. (2005). Estudo sobre as possibilidades e impactos da produção de grandes quantidades de etanol visando à substituição parcial de gasolina no mundo—Fase 1—Relatório Final. Brasília: Centro de Gestão e Estudos Estratégicos—CGEE.

    Google Scholar 

  • CGEE. (2007). Estudo sobre as possibilidades e impactos da produção de grandes quantidades de etanol visando à substituição parcial de gasolina no mundo—Fase 2—Relatório Final. Brasília: Centro de Gestão e Estudos Estratégicos—CGEE.

    Google Scholar 

  • Cheavegatti-Gianotto, A., de Abreu, H. M., Arruda, P., Bespalhok Filho, J. C., Burnquist, W. L., Creste, S., di Ciero, L., Ferro, J. A., de Oliveira Figueira, A. V., de Sousa, F. T., Grossi-de-Sa, M. D., Guzzo, E. C., Hoffmann, H. P., de Andrade Landell, M. G., Macedo, N., Matsuoka, S., de Castro, R. F., Romano, E., da Silva, W. J., de Castro Silva Filho, M., & Cesar Ulian, E. (2011). Sugarcane (Saccharum X officinarum): A reference study for the regulation of genetically modified cultivars in Brazil. Tropical Plant Biology, 4(1), 62–89.

    Google Scholar 

  • Cheon, A., & Urpelainen, J. (2012). Oil prices and energy technology innovation: An empirical analysis. Global Environmental Change, 22(2), 407–417.

    Google Scholar 

  • Clements, E. A., & Fernandes, B. M. (2013). Land grabbing, agribusiness and the peasantry in Brazil and Mozambique. Agrarian South: Journal of Political Economy, 2(1), 41–69.

    Google Scholar 

  • Coelho, J. L. (2012). Email Correspondence: RES: Mechanização e Colhedoras. 12.07.2012 00:43.

    Google Scholar 

  • Colitt, R., Nielsen, S. (2012). Brazil ethanol drive falters on domestic supply shortage. Bloomberg Businessweek

    Google Scholar 

  • Collins, K. M. T., Onwuegbuzie, A. J., & Qun, J. G. (2007). A mixed methods investigation of mixed methods sampling designs in social and health science research. Journal of Mixed Methods Research, 1(3), 267–294.

    Google Scholar 

  • Compeán, R. G., & Polenske, K. R. (2011). Antagonistic bioenergies: Technological divergence of the ethanol industry in Brazil. Energy Policy, 39(11), 6951–6961.

    Google Scholar 

  • CONAB. (2011a). Acompanhamento de safra brasileira: Cana-de-açúcar, terceiro levantamento, Dezembro 2011. Brasília: Companhia Nacional de Abastecimento—CONAB.

    Google Scholar 

  • CONAB. (2011b). A geração termoelétrica com a queima do bagaço de cana-de-açúcar no Brasil. Análise do desempenho da Safra 2009–2010. Companhia Nacional de Abastecimento—CONAB.

    Google Scholar 

  • CONAB. (2013). Acompanhamento de safra brasileira: Cana-de-açúcar, segundo levantamento, Agosto 2013. Brasília: Companhia Nacional de Abastecimento—CONAB.

    Google Scholar 

  • Corbin, J., & Strauss, A. (2008). Basics of qualitative research. Techniques and procedures for developing grounded theory (3rd ed.). CA: Sage.

    Google Scholar 

  • Covrig, C. (2013). A global view on world ethanol markets and trade flows. Biofuels, Bioproducts and Biorefining, 7, 224–227.

    Google Scholar 

  • Crago, C. L., Khanna, M., Barton, J., Giuliani, E., & Amaral, W. (2010). Competitiveness of Brazilian sugarcane ethanol compared to US corn ethanol. Energy Policy, 38(11), 7404–7415.

    Google Scholar 

  • Dal-Bianco, M., Carneiro, M. S., Hotta, C. T., Chapola, R. G., Hoffmann, H. P., Garcia, A. A., & Souza, G. M. (2012). Sugarcane improvement: How far can we go? Current Opinion in Biotechnology, 23(2), 265–270.

    Google Scholar 

  • de Almeida Souza, M. Z. (2013). Modernização sem mudanças da contagem de cabeças à gestão estratégica de pessoas. Brasília: Associação Brasileira de Estudos do Trabalho—ABET.

    Google Scholar 

  • de Andrade, R. M. T., Miccolis, A. (2011). Policies and institutional and legal frameworks in the expansion of Brazilian biofuels. Working Paper 71. Center for International Forestry Research—CIFOR, Bogor, Indonesia.

    Google Scholar 

  • De Figueiredo, E. B., & La Scala, N. (2011). Greenhouse gas balance due to the conversion of sugarcane areas from burned to green harvest in Brazil. Agriculture, Ecosystems & Environment, 141(1–2), 77–85.

    Google Scholar 

  • de Melo, F. H. (1983). Agricultura, energia e recessão econômia. Revista de Economia Política, 3(2), 51–66.

    Google Scholar 

  • de Moraes, M. A. F. D. (2009). Social inclusion of rural workers. In M. A. B. Regitano d’Arce, T. M. Ferreira de Souza Vieira, & T. L. Romanelli (Eds.), Agroenergy and sustainability (pp. 171–197). São Paulo: Edusp.

    Google Scholar 

  • de Moraes, M. A. F. (2010). Biofuels for social inclusion. In: Global sustainable bioenergy—GSB. Latin American Convention, São Paulo. GEMT—ESALQ/USP.

    Google Scholar 

  • de Oliveira, C. O. F., & Walter, A. (2012). Certification for sugarcane production processes. In M. K. Poppe & L. A. Barbosa Cortez (Eds.), Sustainability of sugarcane bioenergy—Updated edition (pp. 257–271). Brasília: Center for strategic studies and management (CGEE).

    Google Scholar 

  • de Sousa Júnior, W. C., & Reid, J. (2010). Uncertainties in Amazon hydropower development: Risk scenarios and environmental issues around the Belo Monte dam. Water Alternatives, 3(2), 249–268.

    Google Scholar 

  • de Souza, M. A. (2012). A gestão do território pelo capital sucroalcooleiro no norte do Paraná. Mundo do trabalho—revista pegada, 13(2), 28.

    Google Scholar 

  • Deininger, K., & Byerlee, D. (2012). The rise of large farms in land abundant countries: Do they have a future? World Development, 40(4), 701–714.

    Google Scholar 

  • Della-Bianca, B. E., Basso, T. O., Stambuk, B. U., Basso, L. C., & Gombert, A. K. (2013). What do we know about the yeast strains from the Brazilian fuel ethanol industry? Applied Microbiology and Biotechnology, 97(3), 979–991.

    Google Scholar 

  • Demirbas, A. (2009). Political, economic and environmental impacts of biofuels: A review. Applied Energy, 86, S108–S117.

    Google Scholar 

  • Dias, M. O., Cunha, M. P., Jesus, C. D., Rocha, G. J., Pradella, J. G., Rossell, C. E., Filho, R. M., & Bonomi, A. (2011). Second generation ethanol in Brazil: Can it compete with electricity production? Bioresource Technology, 102(19), 8964–8971.

    Google Scholar 

  • Dias, M. O. S., Junqueira, T. L., Cavalett, O., Cunha, M. P., Jesus, C. D., Rossell, C. E., Maciel Filho, R., & Bonomi, A. (2012a). Integrated versus stand-alone second generation ethanol production from sugarcane bagasse and trash. Bioresource Technology, 103(1), 152–161.

    Google Scholar 

  • Dias, M. O. S., Junqueira, T. L., Cavalett, O., Pavanello, L. G., Cunha, M. P., Jesus, C. D. F., Maciel Filho, R., & Bonomi, A. (2013). Biorefineries for the production of first and second generation ethanol and electricity from sugarcane. Applied Energy, 109, 72–78.

    Google Scholar 

  • Dias, M. O. S., Junqueira, T. L., Jesus, C. D. F., Rossell, C. E. V., Maciel Filho, R., & Bonomi, A. (2012b). Improving second generation ethanol production through optimization of first generation production process from sugarcane. Energy, 43(1), 246–252.

    Google Scholar 

  • Diola, V., & Santos, F. (2012). Fisiologia. In F. Santos, A. Borém, & C. Caldas (Eds.), Cana-de-açúcar. Bioenergia, açúcar e etanol: Tecnologias e perspectivas (2nd ed.). Viçosa: Universidade Federal de Viçosa.

    Google Scholar 

  • Duarte, C. G., Gaudreau, K., Gibson, R. B., & Malheiros, T. F. (2013). Sustainability assessment of sugarcane-ethanol production in Brazil: A case study of a sugarcane mill in São Paulo state. Ecological Indicators, 30, 119–129.

    Google Scholar 

  • Dutra, R. M., & Szklo, A. S. (2008). Incentive policies for promoting wind power production in Brazil: Scenarios for the Alternative Energy Sources Incentive Program (PROINFA) under the new Brazilian electric power sector regulation. Renewable Energy, 33(1), 65–76.

    Google Scholar 

  • Eastwood, R., Lipton, M., & Newell, A. (2010). Farm size: Chapter 65. Handbook of Agricultural Economics, 4, 3323–3397.

    Google Scholar 

  • Edwards, D. P., & Laurance, S. G. (2012). Green labelling, sustainability and the expansion of tropical agriculture: Critical issues for certification schemes. Biological Conservation, 151, 60–64.

    Google Scholar 

  • Egeskog, A., Berndes, G., Freitas, F., Gustafsson, S., & Sparovek, G. (2011). Integrating bioenergy and food production—A case study of combined ethanol and dairy production in Pontal, Brazil. Energy for Sustainable Development, 15(1), 8–16.

    Google Scholar 

  • Egeskog, A., Freitas, F., Berndes, G., Sparovek, G., & Wirsenius, S. (2014). Greenhouse gas balances and land use changes associated with the planned expansion (to 2020) of the sugarcane ethanol industry in Sao Paulo, Brazil. Biomass and Bioenergy, 63, 280–290.

    Google Scholar 

  • EIA. (2013). Annual Energy Outlook 2013 with projections to 2040. Washington: US Energy Information Administration—EIA. US Department of Energy—DOE.

    Google Scholar 

  • Eisentraut, A. (2009). Sustainable production of 2nd generation biofuels: Potential and perspectives in major economies and developing countries: Extended executive summary. Information Paper. Paris: International Energy Agency—IEA.

    Google Scholar 

  • Ensinas, A. V., Codina, V., Marechal, F., Albarelli, J., Aparecida Silva, M., & Caballero, I. G. (2013). Thermo-economic optimization of integrated first and second generation sugarcane ethanol plant. Chemical Engineering Transactions, 35, 523–528.

    Google Scholar 

  • EPA. (2010). Renewable Fuel Standard Program (RFS2): Regulatory impact analysis. US Environmental Protection Agency—EPA.

    Google Scholar 

  • EPE. (2007). Plano Nacional de Energia 2030. Ministério de Minas e Energia—MME. Empresa de Pesquisa Energética—EPE, Brasília

    Google Scholar 

  • EPE. (2013). Balanço Energético Nacional 2013: Ano base 2012. Rio de Janeiro: Empresa de Pesquisa Energética—EPE.

    Google Scholar 

  • Erdmann, G., & Zweifel, P. (2008). Energieökonomik: Theorie und Anwendungen. Berlin: Springer.

    Google Scholar 

  • Etzkowitz, H., & Leydesdorff, L. (2000). The dynamics of innovation: From national systems and “Mode 2” to a triple helix of university–industry–government relations. Research Policy, 29, 109–123.

    Google Scholar 

  • European Commission. (2012a). Impact assessment. Accompanying the document. Proposal for a Directive of the European Parliament and of the Council amending Directive 98/70/EC relating to the quality of petrol and diesel fuels and amending Directive 2009/28/EC on the promotion of the use of energy from renewable sources. SWD (2012) 343 final. Brussels: European Commission.

    Google Scholar 

  • European Commission. (2012b). Proposal for a Directive of the European Parliament and of the Council amending Directive 98/70/EC relating to the quality of petrol and diesel fuels and amending Directive 2009/28/EC on the promotion of the use of energy from renewable sources. 2012/0288 (COD), vol COM(2012) 595 final. Brussels: European Commission.

    Google Scholar 

  • European Parliament. (2013). European Parliament backs switchover to advanced biofuels. Strasbourg: Press Release.

    Google Scholar 

  • European Union. (2009). European Parliament: Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. L 140. Official Journal of the European Union Brussels.

    Google Scholar 

  • Fajnzylber, P., Lederman, D., & Oliver, J. (2013). Presalt oil discoveries and the long-term development of Brazil. Economic Premise. Washington: The World Bank.

    Google Scholar 

  • FAS. (2013). Sugar: World markets and trade. Foreign Agricultural Service—FAS

    Google Scholar 

  • Faucher, P., & Langlois-Bertrand, S. (2009). Will politics kill biofuels? In M. A. B. Regitano d’Arce, T. M. Ferreira de Souza Vieira, & T. L. Romanelli (Eds.), Agroenergy and sustainability (pp. 83–95). São Paulo: Edusp.

    Google Scholar 

  • Ferreira Filho, J. B. S., & Horridge, M. (2014). Ethanol expansion and indirect land use change in Brazil. Land Use Policy, 36, 595–604.

    Google Scholar 

  • Ferreira, O. C. (2008). Geração de electricidade na indústria Brasileira. In: Instituto Euvaldo Lodi (ed.), Álcool combustivel, vol Indústria em perspectiva (pp. 81–94). Brasília: Instituto Euvaldo Lodi—IEL, Núcleo Central.

    Google Scholar 

  • Figueira, S. R., Burnquist, H. L., & Bacchi, M. R. P. (2010). Forecasting fuel ethanol consumption in Brazil by time series models: 2006–2012. Applied Economics, 42(7), 865–874.

    Google Scholar 

  • Fleischer, D. (2013, Oct 26–Nov 01). Brazil Focus: Weekly Report: 2013. Brazil Focus—Weekly Report. Brasília.

    Google Scholar 

  • Fleischer, D. (2014, Feb 1–7). Brazil Focus: Weekly Report: 2014. Brazil Focus—Weekly Report, Brasília.

    Google Scholar 

  • Folha de São Paulo, (2013). Mecanização atinge 81 % da safra de cana no Estado de SP. 07-01-2013. Folha de São Paulo.

    Google Scholar 

  • Foxon, T., Gross, R., Heptonstall, P., Pearson, P., & Anderson, D. (2007). Energy technology innovation: A systems perspective: Report for the Garnaut climate change review. London: Imperial College.

    Google Scholar 

  • Foxon, T. J., Gross, R., Chase, A., Howes, J., Arnall, A., & Anderson, D. (2005). UK innovation systems for new and renewable energy technologies: Drivers, barriers and systems failures. Energy Policy, 33(16), 2123–2137.

    Google Scholar 

  • Friese, S. (2011). Using ATLAS.ti for analyzing the financial crisis data. Forum Qualitative Sozialforschung/Forum: Qualitative Social Research, 12(1), Art. 39.

    Google Scholar 

  • Furtado, A. T., Gaya Scandiffio, M. I., & Barbosa Cortez, L. A. (2011). The Brazilian sugarcane innovation system. Energy Policy, 39, 156–166.

    Google Scholar 

  • Galdos, M., Cavalett, O., Seabra, J. E. A., Horta Nogueira, L. A., & Bonomi, A. (2013). Trends in global warming and human health impacts related to Brazilian sugarcane ethanol production considering black carbon emissions. Applied Energy, 104, 576–582.

    Google Scholar 

  • Galdos, M. V., Cerri, C. C., & Cerri, C. E. P. (2009). Soil carbon stocks under burned and unburned sugarcane in Brazil. Geoderma, 153(3–4), 347–352.

    Google Scholar 

  • Gallagher, K. S., Grubler, A., Kuhl, L., Nemet, G., & Wilson, C. (2012). The energy technology innovation system. Annual Reviews of Environment and Resources, 37, 137–162.

    Google Scholar 

  • Gallagher, K. S., Siegel, J. R., Strong, A. (2011). Harnessing energy: Technology innovation in developing countries to achieve sustainable prosperity. Background paper prepared for the 2011 World Economic and Social Survey, Department of Economic and Social Affairs of the United Nations Secretariat, New York.

    Google Scholar 

  • Gamborg, C., Tegner Anker, H., & Sandøe, P. (2014). Ethical and legal challenges in bioenergy governance: Coping with value disagreement and regulatory complexity. Energy Policy, 69, 326–333.

    Google Scholar 

  • Gaspar Oliveira, C. B. T., Alcenar de Araújo, D., Salgado da Costa Amaral, C., Pinto Ortolani, A., Nieves Marcano, K. D. (2013). Raízen 2012/13. Sustainability Report. São Paulo: Raízen

    Google Scholar 

  • Giersdorf, J. (2012). Politics and economics of ethanol and biodiesel production and consumption in Brazil (PhD Thesis, Freie Universität Berlin, Berlin).

    Google Scholar 

  • Glaser, B., & Strauss, A. (1967). The discovery of grounded theory: Strategies for qualitative research. New York: Aldine De Gruyter.

    Google Scholar 

  • Gläser, J., & Laudel, G. (2004). Experteninterviews und qualitative Inhaltsanalyse als Instrument rekonstruierender Untersuchungen. Wiesbaden: Verlag für Sozialwissenschaften.

    Google Scholar 

  • Goes, T., Marra, R., de Araújo, M., Alves, E., & Oliveira de Souza, M. (2011). Sugarcane in Brazil. Current technologic stage and perspectives. Revista de Política Agrícola, 1, 52–66.

    Google Scholar 

  • Goh, C. S., Junginger, M., Joudrey, J., Chum, H., Pelkmans, L., Smith, C. T., Stupak, I., Cowie, A., Dahlman, L., Englund, O., Goss Eng, A., & Goovaerts, L. (2013). Impacts of sustainability certification on bioenergy markets and trade. Strategic inter-task study: Monitoring sustainability certification of bioenergy. Paris: IEA Bioenergy.

    Google Scholar 

  • Goldemberg, J. (2006). The ethanol program in Brazil. Environmental Research Letters, 1(1), 014008.

    Google Scholar 

  • Goldemberg, J. (2008). The Brazilian biofuels industry. Biotechnology for Biofuels, 1(1), 6.

    Google Scholar 

  • Goldemberg, J. (2013). Sugarcane ethanol: Strategies to a successful program in Brazil. In J. W. Lee (Ed.), Advanced biofuels and bioproducts (pp. 13–20). New York: Springer.

    Google Scholar 

  • Goldemberg, J., Coelho, S. T., & Guardabassi, P. (2008). The sustainability of ethanol production from sugarcane. Energy Policy, 36, 2086–2097.

    Google Scholar 

  • Goldemberg, J., Mello, F. F. C., Cerri, C. E. P., Davies, C. A., & Cerri, C. C. (2014a). Meeting the global demand for biofuels in 2021 through sustainable land use change policy. Energy Policy, 69, 14–18.

    Google Scholar 

  • Goldemberg, J., Schaeffer, R., Szklo, A., & Lucchesi, R. (2014b). Oil and natural gas prospects in South America: Can the petroleum industry pave the way for renewables in Brazil? Energy Policy, 64, 58–70.

    Google Scholar 

  • Gomes, F. (2012). Copersucar, Eco-Energy to form world’s top ethanol trader. Reuters.

    Google Scholar 

  • Gomes, M, Biondi, A., Brianezi, T., Glass, V. (2009). Brazil of biofuels. Sugarcane 2009. Impacts of crops on land, environment and society. Repórter Brasil, São Paulo

    Google Scholar 

  • Goovaerts, L., Pelkmans, L., Goh, C. S., Junginger, M., Joudrey, J., Chum, H., Smith, C. T., Stupak, I., Cowie, A., Dahlman, L., Englund, O., & Goss Eng, A. (2013). Examining sustainability certification of bioenergy. Strategic inter-task study: Monitoring sustainability certification of bioenergy. Paris: IEA Bioenergy.

    Google Scholar 

  • Grunow, M., Günther, H. O., & Westinner, R. (2007). Supply optimization for the production of raw sugar. International Journal of Production Economics, 110(1–2), 224–239.

    Google Scholar 

  • Habashi, J., & Worley, J. (2009). Child geopolitical agency: A mixed methods case study. Journal of Mixed Methods Research, 3(1), 42–64.

    Google Scholar 

  • Hanson, S. (2007). Brazil’s ethanol diplomacy. Council on Foreign Relations

    Google Scholar 

  • Hees, W., Müller, O., & Schüth, M. (2007). Der Preis für Agrokraftstoffe: Hunger, Vertreibung, Umweltzerstörung. brennpunkte. Freiburg: Lambertus-Verlag.

    Google Scholar 

  • Hennecke, A. M., Faist, M., Reinhardt, J., Junquera, V., Neeft, J., & Fehrenbach, H. (2013). Biofuel greenhouse gas calculations under the European Renewable Energy Directive—A comparison of the BioGrace tool vs. the tool of the Roundtable on Sustainable Biofuels. Applied Energy, 102, 55–62.

    Google Scholar 

  • Hira, A., & de Oliveira, L. G. (2009). No substitute for oil? How Brazil developed its ethanol industry. Energy Policy, 37(6), 2450–2456.

    Google Scholar 

  • Hofsetz, K., & Silva, M. A. (2012). Brazilian sugarcane bagasse: Energy and non-energy consumption. Biomass and Bioenergy, 46, 564–573.

    Google Scholar 

  • Horta Nogueira, L. A., Lima Verde Leal, M. R. (2012). Sugarcane bioethanol and bioelectricity. In M. K. Poppe, L. A. Barbosa Cortez (eds.), Sustainability of sugarcane bioenergy (Updated edn, pp. 113–150). Brasília: Center for strategic studies and management (CGEE).

    Google Scholar 

  • Huertas, D., Berndes, G., Holmen, M., & Sparovek, G. (2010). Sustainability certification of bioethanol: How is it perceived by Brazilian stakeholders? Biofuels, Bioproducts and Biorefining, 4, 369–384.

    Google Scholar 

  • IBGE. (2006). Censo Agropecuário 2006. Brasil, Grandes Regiões e Unidades da Federação. Rio de Janeiro: Instituto Brasileiro de Geografia e Estatística—IBGE.

    Google Scholar 

  • IEA. (2004). Biofuels for transport: An international perspective. Paris: International Energy Agency—IEA.

    Google Scholar 

  • Iles, A., & Martin, A. N. (2013). Expanding bioplastics production: Sustainable business innovation in the chemical industry. Journal of Cleaner Production, 45, 38–49.

    Google Scholar 

  • Cornell University, INSEAD, & WIPO. (2013). The Global Innovation Index 2013: The local dynamics of innovation. Geneva: Cornell University, INSEAD, World Intellectual Property Organization - WIPO.

    Google Scholar 

  • Instituto de Economia Agrícola. (2012). Defensivos Agrícolas: Comercialização recorde em 2011 e expectativas de acréscimo nas vendas em 2012. Análises e Indicadores do Agronegócio. São Paulo: Instituto de Economia Agrícola São Paulo—IEA.

    Google Scholar 

  • INTL FC Stone. (2013). Monthly report sugar and energy: May 2013. Planning. Research and Special Projects Department, Campinas.

    Google Scholar 

  • Isola, J. (2013). Cellulosic ethanol heads for cost competitiveness by 2016. Bloomberg New Energy Finance—BNEF, p. 3.

    Google Scholar 

  • Itaipu Binacional. (2014). Consumption increases and Itaipu beats 2012 record. 2014(31–01)

    Google Scholar 

  • Jaggard, K. W., & Townsend, B. (2014). Sugar beet ethanol in the EU. In H. Langeveld, J. Dixon, & H. van Keulen (Eds.), Biofuel cropping systems. Carbon, land and food (pp. 138–153). New York: Routledge.

    Google Scholar 

  • Jagger, A. (2013). The fluctuating fortunes of Brazilian ethanol. Biofuels, Bioproducts and Biorefining, 7, 103–105.

    Google Scholar 

  • Janssen, R., & Rutz, D. D. (2011). Sustainability of biofuels in Latin America: Risks and opportunities. Energy Policy, 39, 5717–5725.

    Google Scholar 

  • Kahl, H. (2008). Biokraftstoffe im Rechtsregime der WTO unter besonderer Berücksichtigung ihrer umweltrelevanten Eigenschaften. Berlin: BWV—Berliner Wissenschafts-Verlag GmbH.

    Google Scholar 

  • Kaup, F., Nitsch, M., Menezes, T. (2011). E2025: Brazil’s aspiration for a massive worldwide substitution of gasoline by 2025. International Nordic Bioenergy 2011 FINBIO publication 51, Jyväskylä, Finland.

    Google Scholar 

  • Kaup, F., & Selbmann, K. (2013). The seesaw of Germany’s biofuel policy: Tracing the evolvement to its current state. Energy Policy, 62, 513–521.

    Google Scholar 

  • Kellner, K., Risoli, C., & Metz, M. (2011). Terminal evaluation of the UNEP/FAO/GEF project “Land Degradation Assessment in Drylands (LADA)”. Nairobi, Kenya: United Nations Environment Programme—UNEP.

    Google Scholar 

  • Knauf, G. (2009). Das Problem der Zertifizierung und die Notwendigkeit von Rahmenbedingungen für den Handel mit Agrarkraftstoffen. In D. Franik, R. Müller, S. Müller, B. Velte, H. Wang-Helmreich, & K. Wehling (Eds.), Biokraftstoffe und Lateinamerika. Globale Zusammenhänge und regionale Auswirkungen (pp. 313–326). Berlin: Wissenschaftlicher Verlag.

    Google Scholar 

  • La Rovere, E. L., Pereira, A. S., & Simoes, A. F. (2011). Biofuels and sustainable energy development in Brazil. World Development, 39(6), 1026–1036.

    Google Scholar 

  • Lacy, W. B., Glenna, L. L., Biscotti, D., Welsh, R., & Clancy, K. (2014). The two cultures of science: Implications for university—Industry relationships in the U.S. agriculture biotechnology. Journal of Integrative Agriculture, 13(2), 455–466.

    Google Scholar 

  • Laluce, C. (1991). Current aspects of fuel ethanol production in Brazil. Critical Reviews in Biotechnology, 11(2), 149–161.

    Google Scholar 

  • Leal, M. R. L. V., Galdos, M. V., Scarpare, F. V., Seabra, J. E. A., Walter, A., & Oliveira, C. O. F. (2013). Sugarcane straw availability, quality, recovery and energy use: A literature review. Biomass and Bioenergy, 53, 11–19.

    Google Scholar 

  • Lehtonen, M. (2010, Oct 8–9). Power, certification, and the social sustainability of Brazilian bioethanol: Views from Brazil. Paper presented at the Berlin Conference on the Human Dimensions of Global Environmental Change. Berlin.

    Google Scholar 

  • Lieberz, S. (2011). FAQs on biofuel sustainability certification in Germany. GAIN Report. US Department of Agriculture—USDA.

    Google Scholar 

  • Macedo, I. C., Seabra, J. E. A., & Silva, J. E. A. R. (2008). Green house gases emissions in the production and use of ethanol from sugarcane in Brazil: The 2005/2006 averages and a prediction for 2020. Biomass and Bioenergy, 32(7), 582–595.

    Google Scholar 

  • Malins, C. (2011). IFPRI-MIRAGE 2011 modelling of indirect land use change. Briefing on report for the European Commission Directorate General for Trade. Washington: The International Council on Clean Transportation—ICCT.

    Google Scholar 

  • Manzatto, C. V., Assad, E. D., Mansilla Bacca, J. F., Zaroni, M. J., Marschhausen Pereira, S. E. (2009). Zoneamento Agroecológico da Cana-de Açúcar: Expandir a produção, preservar a vida, garantir o futuro. Documentos 110. Rio de Janeiro: Embrapa Solos.

    Google Scholar 

  • MAPA. (2009). Agrienergy statistical yearbook 2009. Brasília: Ministry of Agriculture, Livestock and Food Supply—MAPA.

    Google Scholar 

  • MAPA. (2013). Anuário Estatístico da Agroenergia 2012: Statistical Yearbook of Agrienergy (4th edn.). Brasília: Ministério da Agricultura, Pecuária e Abastecimento—MAPA.

    Google Scholar 

  • Marcatto, C., Schlesinger, S., & Overbeek, W. (2010). Cortina de fumaça: O que se esconde por trás da produção de agrocombustíveis. Rio de Janeiro: Action Aid.

    Google Scholar 

  • Maroun, M. R., & La Rovere, E. L. (2014). Ethanol and food production by family smallholdings in rural Brazil: Economic and socio-environmental analysis of micro distilleries in the State of Rio Grande do Sul. Biomass and Bioenergy, 63, 140–155.

    Google Scholar 

  • Martinelli, L. A., Garrett, R., Ferraz, S., & Naylor, R. (2011). Sugar and ethanol production as a rural development strategy in Brazil: Evidence from the state of Sao Paulo. Agricultural Systems, 104(5), 419–428.

    Google Scholar 

  • Matsuoka, S., Ferro, J., & Arruda, P. (2009). The Brazilian experience of sugarcane ethanol industry. In Vitro Cellular & Developmental Biology—Plant, 45(3), 372–381.

    Google Scholar 

  • Mayring, P. (1985). Qualitative Inhaltsanalyse. In G. Jüttemann (Ed.), Qualitative Forschung in der Psychologie (pp. 187–211). Beltz, Weinheim: Grundlagen, Verfahrensweisen, Anwendungsfelder.

    Google Scholar 

  • Mayring, P. (2000). Qualitative Inhaltsanalyse. Forum: Qualitative Sozialforschung Social Research—Social Research (vol 1).

    Google Scholar 

  • MDIC. (2012). Balança comercial brasileira—Dezembro 2012. Brasília: Ministério do Desenvolvimento, Indústria, e Comércio Exterior—MDIC.

    Google Scholar 

  • MDIC. (2013). Balança comercial brasileira—Dezembro 2013. Brasília: Ministério do Desenvolvimento, Indústria, e Comércio Exterior—MDIC.

    Google Scholar 

  • Mendonça, M. L., Pitta, F. T., & Xavier, C. V. (2013). The sugarcane industry and the global economic crisis. Amsterdam, The Netherlands: The Transnational Institute and the Network for Social Justice and Human Rights.

    Google Scholar 

  • Meyer, D., Mytelka, L., Press, R., Dall’Oglio, E. L., de Sousa Jr, P. T., Grubler, A. (2012). Brazilian ethanol: Unpacking a success story of energy technology innovation. Historical case studies of energy technology innovation. In: A. Grubler, F. Aguayo, K. S. Gallagher, et al. (Eds.), The global energy assessment (p. 16). Cambridge: Cambridge University Press.

    Google Scholar 

  • Miller, R. G., & Sorrell, S. R. (2014). The future of oil supply. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 372(2006), 1–27.

    Google Scholar 

  • MME, EPE. (2013). Plano Decenal de Expansão de Energia 2022. Brasília: Ministério de Minas e Energia—MME. Empresa de Pesquisa Energética—EPE.

    Google Scholar 

  • Moreira de Oliveira, S., Dessimon Machado, J. A., Condi, G. K., Borges, J. A., da Rocha Lima, C. G., & da Silva Pereira, R. (2010). A mecanização do corte da cana-de-açúcar na destilaria S/A à luz da teoria da tomada de decisão. RACE Unoesc, 9(1–2), 33–52.

    Google Scholar 

  • Moreira, J. R., Pacca, S. A., & Parente, V. (2014). The future of oil and bioethanol in Brazil. Energy Policy, 65, 7–15.

    Google Scholar 

  • Murphy, S., Burch, D., & Clapp, J. (2012). Cereal secrets: The world’s largest grain traders and global agriculture. Oxfam, Oxford: Oxfam Research Reports.

    Google Scholar 

  • Nass, L. L., Pereira, P. A. A., & Ellis, D. (2007). Biofuels in Brazil: An overview. Crop Science, 47(6), 2228.

    Google Scholar 

  • Nelson, R. R. (2002). Paths of innovation: Technological change in twentieth century America. Economica, 69(274), 348–349.

    Google Scholar 

  • Nelson, R. R. (2008). What enables rapid economic progress: What are the needed institutions? Research Policy, 37(1), 1–11.

    Google Scholar 

  • Nelson, R. R., & Nelson, K. (2002). Technology, institutions, and innovation systems. Research Policy, 31(2), 265–272.

    Google Scholar 

  • Nitsch, M., Giersdorf, J. (2005). Biotreibstoffe in Brasilien. Diskussionsbeiträge des Fachbereichs Wirtschaftswissenschaft der Freien Universität Berlin: Volkswirtschaftliche Reihe, vol Nr.12/2005. Freie Universität Berlin.

    Google Scholar 

  • NL Agency. (2011). How to select a biomass certification scheme? Agriculture and Innovation, Utrecht: Ministry of Economic Affairs.

    Google Scholar 

  • Novo, A., Jansen, K., & Slingerland, M. (2012). The sugarcane-biofuel expansion and dairy farmers’ responses in Brazil. Journal of Rural Studies, 28, 640–649.

    Google Scholar 

  • Novo, A. L., Jansen, K., Slingerland, M., & Giller, K. (2010). Biofuel, dairy production and beef in Brazil: Competing claims on land use in São Paulo state. The Journal of Peasant Studies, 37(4), 769–792.

    Google Scholar 

  • Nuñez, H. M., Önal, H., & Khanna, M. (2013). Land use and economic effects of alternative biofuel policies in Brazil and the United States. Agricultural Economics, 44(4–5), 487–499.

    Google Scholar 

  • Olivério, J. L., Boscariol, F. C., Mantelatto, P. E., César, A. R. P., Ciambelli, J. R. P., do Amaral Gurgel, M. N., & Souza, R. T. G. (2011). Integrated production of organomineral biofertiliser (BIOFOM®) using by-products from the sugar and ethanol agro-industry, associated with the cogeneration of energy. Sugar Tech, 13(1), 17–22.

    Google Scholar 

  • Pacini, H., Assunção, L., van Dam, J., & Toneto, R. (2013). The price for biofuels sustainability. Energy Policy, 59, 898–903.

    Google Scholar 

  • Pacini, H., & Silveira, S. (2011). Consumer choice between ethanol and gasoline: Lessons from Brazil and Sweden. Energy Policy, 39(11), 6936–6942.

    Google Scholar 

  • Pankhurst, C. E., Stirling, G. R., Magarey, R. C., Blair, B. L., Holt, J. A., Bell, M. J., & Garside, A. L. (2005). Quantification of the effects of rotation breaks on soil biological properties and their impact on yield decline in sugarcane. Soil Biology and Biochemistry, 37(6), 1121–1130.

    Google Scholar 

  • Pavanan, K. C., Bosch, R. A., Cornelissen, R., & Philp, J. C. (2013). Biomass sustainability and certification. Trends in Biotechnology, 31(7), 385–387.

    Google Scholar 

  • Philp, J. C., Bartsev, A., Ritchie, R. J., Baucher, M. A., & Guy, K. (2013). Bioplastics science from a policy vantage point. New Biotechnology, 30(6), 635–646.

    Google Scholar 

  • Piore, M. (1979). Qualitative research techniques in economics. Administrative Science Quarterly, 24(4), 560–569.

    Google Scholar 

  • Piore, M. (2004). Qualitative research: Does it fit in economics? Paper presented at the “Do facts matter in elaborating theories? Cross perspectives from economics, management, political science and sociology”—Conference, CRG-Ecole Polytechnique Paris.

    Google Scholar 

  • Polansek, T. (2013). Bunge may sell money-losing Brazil sugar unit; new CEO. Reuters.

    Google Scholar 

  • Popp, J., Lakner, Z., Harangi-Rákos, M., & Fári, M. (2014). The effect of bioenergy expansion: Food, energy, and environment. Renewable and Sustainable Energy Reviews, 32, 559–578.

    Google Scholar 

  • Punch, K. F. (2005). Introduction to social research: Quantitative and qualitative approaches (2nd ed.). London: Sage.

    Google Scholar 

  • Rabelo, S. C., Carrere, H., Maciel Filho, R., & Costa, A. C. (2011). Production of bioethanol, methane and heat from sugarcane bagasse in a biorefinery concept. Bioresource Technology, 102(17), 7887–7895.

    Google Scholar 

  • Ratter, J. A., Ribeiro, J. F., & Bridgewater, S. (1997). The Brazilian Cerrado vegetation and threats to its biodiversity. Annals of Botany, 80, 223–230.

    Google Scholar 

  • Řezbová, H., Belová, A., & Škubna, O. (2013). Sugar beet production in the European Union and their future trends Agris on-line. Papers in Economics and Informatics, 5, 165–178.

    Google Scholar 

  • RFA. (2012). Accelerating industry innovation. Ethanol industry outlook. Washington, D.C.: Renewable Fuels Association—RFA.

    Google Scholar 

  • Ribeiro Vieira Filho, J. E., Pinto Vieira, A. C. (2013). A inovação na agricultura brasileira: Uma reflexão a partir da análise dos certificados de proteção de cultivares. Texto para discussão, vol 1866. Instituto de Pesquisa Econômica Aplicada—IPEA, Brasília.

    Google Scholar 

  • Riveras, I. (2012). ADM to take full ownership of Brazil ethanol plant. Reuters.

    Google Scholar 

  • Santos, D. (2013). Usinas adotam simuladores para treinar colhedores de cana. Folha de S. Paulo.

    Google Scholar 

  • Santos, D., Basso, L. F., Kimura, H., & Kayo, E. K. (2014). Innovation efforts and performances of Brazilian firms. Journal of Business Research, 67(4), 527–535.

    Google Scholar 

  • Sarantakos, S. (2005). Social research (3rd ed.). New York: Palgrave Macmillan.

    Google Scholar 

  • Scaramucci, J. A., Perin, C., Pulino, P., Bordoni, O. F. J. G., da Cunha, M. P., & Cortez, L. A. B. (2006). Energy from sugarcane bagasse under electricity rationing in Brazil: A computable general equilibrium model. Energy Policy, 34(9), 986–992.

    Google Scholar 

  • Scarlat, N., & Dallemand, J.-F. (2011). Recent developments of biofuels/bioenergy sustainability certification: A global overview. Energy Policy, 39, 1630–1646.

    Google Scholar 

  • Scheyder, E. (2011). Dow Chemical, Mitsui in Brazil sugarcane venture. Reuters.

    Google Scholar 

  • Schmitz, N., Henke, J., & Klepper, G. (2009). Biokraftstoffe: Eine vergleichende Analyse. Hürth: Nova Institut.

    Google Scholar 

  • Scortecci, K. C., Creste, S., Calsa, T., Jr., Xavier, M. A., Landell, M. G. A., Figueira, A., & Benedito, V. A. (2012). Challenges, opportunities and recent advances in sugarcane breeding. In I. Abdurakhmonov (Ed.), Plant breeding. Rijeka, Croatia: InTech.

    Google Scholar 

  • Seabra, J. E. A., & Macedo, I. C. (2011). Comparative analysis for power generation and ethanol production from sugarcane residual biomass in Brazil. Energy Policy, 39(1), 421–428.

    Google Scholar 

  • Seipel, C., & Rieker, P. (2003). Integrative Sozialforschung. Konzepte und Methoden der qualitativen und quantitativen empirischen Forschung. Weinheim: Juventa-Verlag.

    Google Scholar 

  • Service RF. (2013). What happens when weed killers stop killing? Science, 341(6152), 1329.

    Google Scholar 

  • Silva, R. E., & Magalhães Sobrinho, P. (2013). Environmental and financial impact assessment of natural gas cogeneration plants in the industrial sector. Engenharia Térmica (Thermal Engineering), 12, 3–10.

    Google Scholar 

  • Sims, R. E., Mabee, W., Saddler, J. N., & Taylor, M. (2010). An overview of second generation biofuel technologies. Bioresource Technology, 101(6), 1570–1580.

    Google Scholar 

  • Soccol, C. R., Vandenberghe, L. P., Medeiros, A. B., Karp, S. G., Buckeridge, M., Ramos, L. P., Pitarelo, A. P., Ferreira-Leitao, V., Gottschalk, L. M., Ferrara, M. A., da Silva Bon, E. P., de Moraes, L. M., Araujo Jde, A., & Torres, F. A. (2010). Bioethanol from lignocelluloses: Status and perspectives in Brazil. Bioresource Technology, 101(13), 4820–4825.

    Google Scholar 

  • Soito, J. L. S., & Freitas, M. A. V. (2011). Amazon and the expansion of hydropower in Brazil: Vulnerability, impacts and possibilities for adaptation to global climate change. Renewable and Sustainable Energy Reviews, 15(6), 3165–3177.

    Google Scholar 

  • Solomon, B. D. (2010). Biofuels and sustainability. New York Academy of Sciences, 1185, 119–134.

    Google Scholar 

  • Soto, A., Ewing, R. (2013). UPDATE 2: Brazil throws troubled ethanol industry tax breaks, credit. Reuters

    Google Scholar 

  • Sparovek, G., Berndes, G., Egeskog, A., de Freitas, F. L. M., Gustafsson, S., & Hansson, J. (2007). Sugarcane ethanol production in Brazil: an expansion model sensitive to socioeconomic and environmental concerns. Biofuels, Bioproducts & Biorefining, 1(4), 270–282.

    Google Scholar 

  • Spetic, W., Marquez, P., & Kozak, R. (2012). Critical areas and entry points for sustainability related strategies in the sugarcane based ethanol industry of Brazil. Business Strategy and the Environment, 21(6), 370–386.

    Google Scholar 

  • Starr, M. A. (2012). Qualitative and mixed-methods research in economics: Surprising growth, promising future. Journal of Economic Surveys, 28, 1–27.

    Google Scholar 

  • Stein, M. L., Malik, N. S. (2010). Just one word: Bioplastics. Plastics from plant materials are still a small market. But they have huge potential. The Wall Street Journal.

    Google Scholar 

  • Stickler, C. M., Nepstad, D. C., Azevedo, A. A., & McGrath, D. G. (2013). Defending public interests in private lands: Compliance, costs and potential environmental consequences of the Brazilian Forest Code in Mato Grosso. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 368(1619), 1–13.

    Google Scholar 

  • Strauss, A., & Corbin, J. (1998). Basics of qualitative research: Techniques and procedures for developing Grounded Theory (2nd ed.). California: Sage.

    Google Scholar 

  • Suurs, R. A. A., & Hekkert, M. P. (2009). Competition between first and second generation technologies: Lessons from the formation of a biofuels innovation system in The Netherlands. Energy, 34(5), 669–679.

    Google Scholar 

  • Tait, J. (2011). The ethics of biofuels. GCB Bioenergy, 3, 271–275.

    Google Scholar 

  • Tavares de Almeida, L. S. (2008). APLA: Referência mundial em desenvolvimento e aplicação de tecnologias em combustíveis renováveis. In: Instituto Euvaldo Lodi. (ed.), Álcool combustível, vol Indústria em perspectiva (pp. 155–161). Brasília: Instituto Euvaldo Lodi—IEL. Núcleo Central.

    Google Scholar 

  • The Economist. (2012). Oil in Brazil: The perils of Petrobras. The Economist.

    Google Scholar 

  • The Economist. (2013). Dams in the Amazon: The rights and wrongs of Belo Monte. The Economist.

    Google Scholar 

  • The Economist. (2014). Schumpeter: Measuring management. The Economist. The Economist, London.

    Google Scholar 

  • Ueki, Y. (2007). Industrial development and the innovation system of the ethanol sector in Brazil. Discussion Paper No. 109. Institute of Developing Economics, Chiba, Japan.

    Google Scholar 

  • UNICA. (2011). EU violates WTO rules with out-of-quota sugar exports, says UNICA. UNICA News.

    Google Scholar 

  • United States Government. (2007). United States Government. Energy Independence and Security Act of 2007. Public Law 110–140—Dec 19, 2007, p 311.

    Google Scholar 

  • Uriarte, M., Yackulic, C. B., Cooper, T., Flynn, D., Cortes, M., Crk, T., Cullman, G., McGinty, M., & Sircely, J. (2009). Expansion of sugarcane production in São Paulo, Brazil: Implications for fire occurrence and respiratory health. Agriculture, Ecosystems & Environment, 132(1–2), 48–56.

    Google Scholar 

  • Valdes, C. (2011). Brazil’s ethanol industry: Looking forward. A report from the economic research service. United States Department of Agriculture—USDA

    Google Scholar 

  • Valor Econômico. (2014). Eletricidade ‘salva’ usina de etanol no Centro-Oeste. Valor Econômico.

    Google Scholar 

  • van Dam, J., Junginger, M., & Faaij, A. P. C. (2010). From the global efforts on certification of bioenergy towards an integrated approach based on sustainable land use planning. Renewable and Sustainable Energy Reviews, 14(9), 2445–2472.

    Google Scholar 

  • Veríssimo, M. P., & Caixeta Andrade, D. (2012). Determinantes econômicos da produção de etanol no Brasil no período 1980–2008. Revista de Política Agrícola, 2, 122–138.

    Google Scholar 

  • Voltarelli, M. A., Pereira da Silva, R., Rosalen, D. L., Zerbato, C., & Tufaile Cassia, M. (2013). Quality of performance of the operation of sugarcane mechanized planting in day and night shifts. Australian Journal of Crop Science, 7(9), 1396–1406.

    Google Scholar 

  • Walter, A. (2012). Contribution of sugarcane bioenergy to the Brazilian energy matrix. In M. K. Poppe & L. A. Barbosa Cortez (Eds.), Sustainability of sugarcane bioenergy (pp. 299–312). Brasília: Center for strategic studies and management—CGEE.

    Google Scholar 

  • Wang, M., Han, J., Dunn, J. B., Cai, H., & Elgowainy, A. (2012). Well-to-wheels energy use and greenhouse gas emissions of ethanol from corn, sugarcane and cellulosic biomass for US use. Environmental Research Letters, 7(4), 1–13.

    Google Scholar 

  • Wang, Y., & Li-Ying, J. (2013). How do the BRIC countries play their roles in the global innovation arena? A study based on USPTO patents during 1990–2009. Scientometrics, 98(2), 1065–1083.

    Google Scholar 

  • Weischer, C. (2007). Sozialforschung. Konstanz: UVK Verlagsgesellschaft mbH.

    Google Scholar 

  • Wiloso, E. I., Heijungs, R., & de Snoo, G. R. (2012). LCA of second generation bioethanol: A review and some issues to be resolved for good LCA practice. Renewable and Sustainable Energy Reviews, 16(7), 5295–5308.

    Google Scholar 

  • Wilson, C., Grubler, A., Gallagher, K. S., & Nemet, G. F. (2012). Marginalization of end-use technologies in energy innovation for climate protection. Nature Climate Change, 2(11), 780–788.

    Google Scholar 

  • Zezza, A. (2012). Certfication on sustainability in the biofuel sector: A case study on Brazilian ethanol. Paper presented at the 1st AIEAA Conference ‘Towards a Sustainable Bio-economy: Economic Issues and Policy Challenges’, Trento, Italy.

    Google Scholar 

  • Zuurbier, P., & van den Vooren, J. (2009). The impact of the economic crisis on the Brazilian sugarcane industry: Stretching the bio-based economy. In M. A. B. Regitano d’Arce, T. M. Ferreira de Souza Vieira, & T. L. Romanelli (Eds.), Agroenergy and sustainability (pp. 63–82). São Paulo: Edusp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kaup, F. (2015). Empirical Research—setor sucroenergético in Brazil—From the Experts’ Mouths. In: The Sugarcane Complex in Brazil. Contributions to Economics. Springer, Cham. https://doi.org/10.1007/978-3-319-16583-7_4

Download citation

Publish with us

Policies and ethics