Skip to main content

Plasmonic Sensors on 2D Ordered Structures

  • Chapter
Organic and Hybrid Photonic Crystals

Abstract

Colloidal lithography with polystyrene spheres allows for the fabrication of hybrid polymer/metal two-dimensional ordered surfaces. They consist of a hexagonal lattice of plasma-polymerized acrylic acid (ppAA) or poly(methyl methacrylate) (PMMA) pillars embedded in an optically thick gold film deposited on a glass substrate. Such a kind of nanostructured system has been shown to support either propagating Surface Plasmon Polaritons or “Mie-like” localized resonances, and appears to be particularly interesting for sensing applications. Tuning the structural parameters, a strong interaction among delocalized and localized plasmonic modes can be obtained together with a good coupling with light. This opens the way towards an optical biomolecular sensor system in which a modification/adhesion on the free nanostructured surface can be easily detected by a simple, near normal reflectance measurement performed from the substrate side, despite the relatively large gold thickness. The simple configuration allows for a surface plasmon resonance (SPR) imaging configuration and enables the real-time multiplexed detection of several analytes. The sensing performance of the surfaces (sensitivity to refractive index change and to the adhesion of molecular monolayers) has been tested using standard spectroscopic techniques. The electromagnetic field’s spatial distribution within the nanostructures and its intensity enhancement have been numerically calculated by finite difference time domain (FDTD) simulations. The results, including the calculated reflectance spectra, are in good agreement with the experimentaldata.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. A.Qureshi, Y.Gurbuz, J.H.Niazi, Sens. Actuators B 171–172, 62–76 (2012)

    Article  Google Scholar 

  2. A.P.F. Turner, Chem. Soc. Rev. 42(8), 3184–3196 (2013)

    Article  Google Scholar 

  3. K.R. Rogers, Anal. Chim. Acta 568(1–2), 222–231 (2006)

    Article  Google Scholar 

  4. B.Van Dorst etal., Biosen. Bioelectron. 26(4), 1178–1194 (2010)

    Article  Google Scholar 

  5. Y.B. Shin etal., Sens. Actuators B Chem. 150(1), 1–6 (2010)

    Article  Google Scholar 

  6. X.Fan etal., Anal. Chim. Acta 620(1–2), 8–26 (2008)

    Article  Google Scholar 

  7. E.A. Smith, R.M.Corn, Appl. Spectrosc. 57(11), 320A–332A (2003)

    Article  Google Scholar 

  8. E.Ouellet, L.Lund, E.T.Lagally, Methods Mol. Biol. 949, 473–490 (2013)

    Article  Google Scholar 

  9. A.Einhauer, A.Jungbauer, J.Chromatogr. A 921(1), 25–30 (2001)

    Article  Google Scholar 

  10. F.Bretagnol etal., Plasma Processes Polym. 3, 443–455 (2006)

    Article  Google Scholar 

  11. A.Valsesia etal., Anal. Chem. 80, 7336–40 (2008). doi:10.1021/ac801021z

    Article  Google Scholar 

  12. J.N. Anker etal., Nat. Mater. 7(6), 442–453 (2008)

    Article  Google Scholar 

  13. X.D. Hoa, A.G.Kirk, M.Tabrizian, Biosen. Bioelectron. 23(2), 151–160 (2007)

    Article  Google Scholar 

  14. J.Homola, Chem. Rev. 108(2), 462–493 (2008)

    Article  Google Scholar 

  15. H.Šípová, J.Homola, Anal. Chim. Acta 773, 9–23 (2013)

    Article  Google Scholar 

  16. C.Situ etal., Trends Anal. Chem. 29(11), 1305–1315 (2010)

    Article  Google Scholar 

  17. H.Rather, Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer Tracts in Modern Physics, vol. 111(Springer, Berlin/Heidelberg, 1988)

    Google Scholar 

  18. W.L. Barnes, J.Opt. A Pure Appl. 8(4), S87–S93 (2006)

    Article  Google Scholar 

  19. E.Kretschmann, H.Raether, Z.Naturforsch. 23A, 2135–2136 (1968)

    Google Scholar 

  20. A.Boardman, Electromagnetic Surface Modes (Wiley, NewYork, 1982)

    Google Scholar 

  21. S.A. Maier, Plasmonics: Fundamentals and Applications (Springer Science+Business Media LLC, NewYork, 2007)

    Google Scholar 

  22. J.Parsons etal., Phys Rev B 79, 073412 (2009). doi:10.1103/PhysRevB.79.073412

    Article  Google Scholar 

  23. M.Piliarik etal., Opt. Express 20(1), 672–680 (2012)

    Article  Google Scholar 

  24. K.A. Willets, R.P.Van Duyne, Annu. Rev. Phys. Chem. 58, 267–297 (2007)

    Article  Google Scholar 

  25. T.W. Teperik etal., Opt. Express 14, 11964–11971 (2006)

    Article  Google Scholar 

  26. G.McNay etal., Appl. Spectrosc. 65(8), 825–837 (2011)

    Article  Google Scholar 

  27. K.Kneipp, M.Moskovits, H.Kneipp, Surface-Enhanced Raman Scattering Physics and Applications (Springer, Berlin, 2006)

    Book  Google Scholar 

  28. J.D. Caldwell etal., ACS Nano 5(5), 4046–4055 (2011)

    Article  Google Scholar 

  29. M.Najiminaini etal., Appl. Phys. Lett. 100, 043105 (2012). doi:10.1063/1.3679173

    Article  Google Scholar 

  30. J.P. Monteiro etal., Sens. Actuators B Chem. 178, 366–370 (2013)

    Article  Google Scholar 

  31. M.J. Kofke etal., Appl. Phys. Lett. 94, 023104 (2009). doi:10.1063/1.3067835

    Article  Google Scholar 

  32. A.Lesuffleur etal., Appl. Phys. Lett. 90, 243110 (2007). doi:10.1063/1.2747668

    Article  Google Scholar 

  33. W.A. Murray, S.Astilean, W.L.Barnes, Phys Rev B 69, 165407 (2004). doi:10.1103/PhysRevB.69.165407C

    Article  Google Scholar 

  34. A.G. Brolo etal., Langmuir 20(12), 4813–4815 (2004)

    Article  Google Scholar 

  35. S.Scarano etal., Biosen. Bioelectron. 25(5), 957–966 (2010)

    Article  Google Scholar 

  36. A.De Leebeeck etal., Anal. Chem. 79(11), 4094–4100 (2007)

    Article  Google Scholar 

  37. H.Im etal., Anal. Chem. 84(4), 1941–1947 (2012)

    Article  Google Scholar 

  38. T.W. Ebbesen etal., Nature 391, 667–669 (1998). doi:10.1038/35570

    Article  Google Scholar 

  39. F.J. Garcia-Vidal etal., Rev. Mod. Phys. 82, 729–787 (2010)

    Article  Google Scholar 

  40. K.J. Klein Koerkamp etal., Phys. Rev. Lett. 92, 183901 (2004). doi:10.1103/PhysRevLett.92.183901

    Article  Google Scholar 

  41. K.L. Van der Molen etal., Phys Rev B 72, 045421 (2005). doi:10.1103/PhysRevB.72.045421

    Article  Google Scholar 

  42. J.Martinez-Perdiguero etal., Procedia Eng. 47, 805–808 (2012)

    Article  Google Scholar 

  43. N.C. Lindquist etal., Ann. Phys. 524(11), 687–696 (2012)

    Article  Google Scholar 

  44. S.Giudicatti etal., Phys. Status Solidi A 207(4), 935–942 (2010)

    Article  Google Scholar 

  45. C.Jian etal., Appl. Surf. Sci. 270, 6(2013)

    Article  Google Scholar 

  46. A.Valsesia etal., J.Phys. D Appl. Phys. 40(8), 2341 (2007)

    Article  Google Scholar 

  47. C.M. Hsu etal., Appl. Phys. Lett. 93, 133109 (2008)

    Article  Google Scholar 

  48. S.Giudicatti etal., J.Opt. Soc. Am.B 29(7), 1641–1647 (2012)

    Article  Google Scholar 

  49. S.Giudicatti, F.Marabelli, P.Pellacani, Plasmonics 8(2), 975–981 (2013)

    Article  Google Scholar 

  50. A.Taflove, S.C.Hagness, Computational Electrodynamics—The FDTD Method, 2nd edn. (Artech House, Norwood, 2000). A commercial software, Lumerical FDTD (www.lumerical.com), was used

    Google Scholar 

  51. B.Bottazzi etal., J.Biomed. Opt. 19, 017006 (2014)

    Article  Google Scholar 

  52. T.Campbell, G.Kim, Biomaterials 28(15), 2380–2392 (2007)

    Article  Google Scholar 

  53. Xie et al., Solid State Commun. 150, 2162–2167 (2010). doi:10.1016/j.ssc.2010.09.004

Download references

Acknowledgements

The research described above has been developed with the contribution of several students and researchers. The authors are indebted to Dr Francois Rossi and Dr Pascal Colpo of the Joint Research Center of the European Commission in Ispra for their support and collaboration. Dr.Gerardo Marchesini offered his competences in biotechnological problems and as a manager of Plasmore s.r.l.Silvio Vendrame, Rita Therishod, and Alessio Carmine Scipione gave their contribution during the preparation of their diploma thesis. Francesco Floris is now taking the heritage of the past work to explore new effects and develop new applications of the plasmonic systems in his PhD thesis work. All of them deserve the author acknowledgements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Marabelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Marabelli, F., Valsesia, A., Giudicatti, S., Fornasari, L., Pellacani, P., Frangolho, A. (2015). Plasmonic Sensors on 2D Ordered Structures. In: Comoretto, D. (eds) Organic and Hybrid Photonic Crystals. Springer, Cham. https://doi.org/10.1007/978-3-319-16580-6_16

Download citation

Publish with us

Policies and ethics