Abstract
Colloidal lithography with polystyrene spheres allows for the fabrication of hybrid polymer/metal two-dimensional ordered surfaces. They consist of a hexagonal lattice of plasma-polymerized acrylic acid (ppAA) or poly(methyl methacrylate) (PMMA) pillars embedded in an optically thick gold film deposited on a glass substrate. Such a kind of nanostructured system has been shown to support either propagating Surface Plasmon Polaritons or “Mie-like” localized resonances, and appears to be particularly interesting for sensing applications. Tuning the structural parameters, a strong interaction among delocalized and localized plasmonic modes can be obtained together with a good coupling with light. This opens the way towards an optical biomolecular sensor system in which a modification/adhesion on the free nanostructured surface can be easily detected by a simple, near normal reflectance measurement performed from the substrate side, despite the relatively large gold thickness. The simple configuration allows for a surface plasmon resonance (SPR) imaging configuration and enables the real-time multiplexed detection of several analytes. The sensing performance of the surfaces (sensitivity to refractive index change and to the adhesion of molecular monolayers) has been tested using standard spectroscopic techniques. The electromagnetic field’s spatial distribution within the nanostructures and its intensity enhancement have been numerically calculated by finite difference time domain (FDTD) simulations. The results, including the calculated reflectance spectra, are in good agreement with the experimentaldata.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
A.Qureshi, Y.Gurbuz, J.H.Niazi, Sens. Actuators B 171–172, 62–76 (2012)
A.P.F. Turner, Chem. Soc. Rev. 42(8), 3184–3196 (2013)
K.R. Rogers, Anal. Chim. Acta 568(1–2), 222–231 (2006)
B.Van Dorst etal., Biosen. Bioelectron. 26(4), 1178–1194 (2010)
Y.B. Shin etal., Sens. Actuators B Chem. 150(1), 1–6 (2010)
X.Fan etal., Anal. Chim. Acta 620(1–2), 8–26 (2008)
E.A. Smith, R.M.Corn, Appl. Spectrosc. 57(11), 320A–332A (2003)
E.Ouellet, L.Lund, E.T.Lagally, Methods Mol. Biol. 949, 473–490 (2013)
A.Einhauer, A.Jungbauer, J.Chromatogr. A 921(1), 25–30 (2001)
F.Bretagnol etal., Plasma Processes Polym. 3, 443–455 (2006)
A.Valsesia etal., Anal. Chem. 80, 7336–40 (2008). doi:10.1021/ac801021z
J.N. Anker etal., Nat. Mater. 7(6), 442–453 (2008)
X.D. Hoa, A.G.Kirk, M.Tabrizian, Biosen. Bioelectron. 23(2), 151–160 (2007)
J.Homola, Chem. Rev. 108(2), 462–493 (2008)
H.Šípová, J.Homola, Anal. Chim. Acta 773, 9–23 (2013)
C.Situ etal., Trends Anal. Chem. 29(11), 1305–1315 (2010)
H.Rather, Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer Tracts in Modern Physics, vol. 111(Springer, Berlin/Heidelberg, 1988)
W.L. Barnes, J.Opt. A Pure Appl. 8(4), S87–S93 (2006)
E.Kretschmann, H.Raether, Z.Naturforsch. 23A, 2135–2136 (1968)
A.Boardman, Electromagnetic Surface Modes (Wiley, NewYork, 1982)
S.A. Maier, Plasmonics: Fundamentals and Applications (Springer Science+Business Media LLC, NewYork, 2007)
J.Parsons etal., Phys Rev B 79, 073412 (2009). doi:10.1103/PhysRevB.79.073412
M.Piliarik etal., Opt. Express 20(1), 672–680 (2012)
K.A. Willets, R.P.Van Duyne, Annu. Rev. Phys. Chem. 58, 267–297 (2007)
T.W. Teperik etal., Opt. Express 14, 11964–11971 (2006)
G.McNay etal., Appl. Spectrosc. 65(8), 825–837 (2011)
K.Kneipp, M.Moskovits, H.Kneipp, Surface-Enhanced Raman Scattering Physics and Applications (Springer, Berlin, 2006)
J.D. Caldwell etal., ACS Nano 5(5), 4046–4055 (2011)
M.Najiminaini etal., Appl. Phys. Lett. 100, 043105 (2012). doi:10.1063/1.3679173
J.P. Monteiro etal., Sens. Actuators B Chem. 178, 366–370 (2013)
M.J. Kofke etal., Appl. Phys. Lett. 94, 023104 (2009). doi:10.1063/1.3067835
A.Lesuffleur etal., Appl. Phys. Lett. 90, 243110 (2007). doi:10.1063/1.2747668
W.A. Murray, S.Astilean, W.L.Barnes, Phys Rev B 69, 165407 (2004). doi:10.1103/PhysRevB.69.165407C
A.G. Brolo etal., Langmuir 20(12), 4813–4815 (2004)
S.Scarano etal., Biosen. Bioelectron. 25(5), 957–966 (2010)
A.De Leebeeck etal., Anal. Chem. 79(11), 4094–4100 (2007)
H.Im etal., Anal. Chem. 84(4), 1941–1947 (2012)
T.W. Ebbesen etal., Nature 391, 667–669 (1998). doi:10.1038/35570
F.J. Garcia-Vidal etal., Rev. Mod. Phys. 82, 729–787 (2010)
K.J. Klein Koerkamp etal., Phys. Rev. Lett. 92, 183901 (2004). doi:10.1103/PhysRevLett.92.183901
K.L. Van der Molen etal., Phys Rev B 72, 045421 (2005). doi:10.1103/PhysRevB.72.045421
J.Martinez-Perdiguero etal., Procedia Eng. 47, 805–808 (2012)
N.C. Lindquist etal., Ann. Phys. 524(11), 687–696 (2012)
S.Giudicatti etal., Phys. Status Solidi A 207(4), 935–942 (2010)
C.Jian etal., Appl. Surf. Sci. 270, 6(2013)
A.Valsesia etal., J.Phys. D Appl. Phys. 40(8), 2341 (2007)
C.M. Hsu etal., Appl. Phys. Lett. 93, 133109 (2008)
S.Giudicatti etal., J.Opt. Soc. Am.B 29(7), 1641–1647 (2012)
S.Giudicatti, F.Marabelli, P.Pellacani, Plasmonics 8(2), 975–981 (2013)
A.Taflove, S.C.Hagness, Computational Electrodynamics—The FDTD Method, 2nd edn. (Artech House, Norwood, 2000). A commercial software, Lumerical FDTD (www.lumerical.com), was used
B.Bottazzi etal., J.Biomed. Opt. 19, 017006 (2014)
T.Campbell, G.Kim, Biomaterials 28(15), 2380–2392 (2007)
Xie et al., Solid State Commun. 150, 2162–2167 (2010). doi:10.1016/j.ssc.2010.09.004
Acknowledgements
The research described above has been developed with the contribution of several students and researchers. The authors are indebted to Dr Francois Rossi and Dr Pascal Colpo of the Joint Research Center of the European Commission in Ispra for their support and collaboration. Dr.Gerardo Marchesini offered his competences in biotechnological problems and as a manager of Plasmore s.r.l.Silvio Vendrame, Rita Therishod, and Alessio Carmine Scipione gave their contribution during the preparation of their diploma thesis. Francesco Floris is now taking the heritage of the past work to explore new effects and develop new applications of the plasmonic systems in his PhD thesis work. All of them deserve the author acknowledgements.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Marabelli, F., Valsesia, A., Giudicatti, S., Fornasari, L., Pellacani, P., Frangolho, A. (2015). Plasmonic Sensors on 2D Ordered Structures. In: Comoretto, D. (eds) Organic and Hybrid Photonic Crystals. Springer, Cham. https://doi.org/10.1007/978-3-319-16580-6_16
Download citation
DOI: https://doi.org/10.1007/978-3-319-16580-6_16
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-16579-0
Online ISBN: 978-3-319-16580-6
eBook Packages: Chemistry and Materials ScienceChemistry and Material Science (R0)