Advertisement

Plasmonic Sensors on 2D Ordered Structures

  • Franco MarabelliEmail author
  • Andrea Valsesia
  • Silvia Giudicatti
  • Lucia Fornasari
  • Paola Pellacani
  • Ana Frangolho

Abstract

Colloidal lithography with polystyrene spheres allows for the fabrication of hybrid polymer/metal two-dimensional ordered surfaces. They consist of a hexagonal lattice of plasma-polymerized acrylic acid (ppAA) or poly(methyl methacrylate) (PMMA) pillars embedded in an optically thick gold film deposited on a glass substrate. Such a kind of nanostructured system has been shown to support either propagating Surface Plasmon Polaritons or “Mie-like” localized resonances, and appears to be particularly interesting for sensing applications. Tuning the structural parameters, a strong interaction among delocalized and localized plasmonic modes can be obtained together with a good coupling with light. This opens the way towards an optical biomolecular sensor system in which a modification/adhesion on the free nanostructured surface can be easily detected by a simple, near normal reflectance measurement performed from the substrate side, despite the relatively large gold thickness. The simple configuration allows for a surface plasmon resonance (SPR) imaging configuration and enables the real-time multiplexed detection of several analytes. The sensing performance of the surfaces (sensitivity to refractive index change and to the adhesion of molecular monolayers) has been tested using standard spectroscopic techniques. The electromagnetic field’s spatial distribution within the nanostructures and its intensity enhancement have been numerically calculated by finite difference time domain (FDTD) simulations. The results, including the calculated reflectance spectra, are in good agreement with the experimentaldata.

Keywords

Nanostructured surfaces Colloidal lithography Nanocavities Surface plasmon resonance Optical response Sensing Imaging Multiplexing 

Notes

Acknowledgements

The research described above has been developed with the contribution of several students and researchers. The authors are indebted to Dr Francois Rossi and Dr Pascal Colpo of the Joint Research Center of the European Commission in Ispra for their support and collaboration. Dr.Gerardo Marchesini offered his competences in biotechnological problems and as a manager of Plasmore s.r.l.Silvio Vendrame, Rita Therishod, and Alessio Carmine Scipione gave their contribution during the preparation of their diploma thesis. Francesco Floris is now taking the heritage of the past work to explore new effects and develop new applications of the plasmonic systems in his PhD thesis work. All of them deserve the author acknowledgements.

References

  1. 1.
    A.Qureshi, Y.Gurbuz, J.H.Niazi, Sens. Actuators B 171–172, 62–76 (2012)CrossRefGoogle Scholar
  2. 2.
    A.P.F. Turner, Chem. Soc. Rev. 42(8), 3184–3196 (2013)CrossRefGoogle Scholar
  3. 3.
    K.R. Rogers, Anal. Chim. Acta 568(1–2), 222–231 (2006)CrossRefGoogle Scholar
  4. 4.
    B.Van Dorst etal., Biosen. Bioelectron. 26(4), 1178–1194 (2010)CrossRefGoogle Scholar
  5. 5.
    Y.B. Shin etal., Sens. Actuators B Chem. 150(1), 1–6 (2010)CrossRefGoogle Scholar
  6. 6.
    X.Fan etal., Anal. Chim. Acta 620(1–2), 8–26 (2008)CrossRefGoogle Scholar
  7. 7.
    E.A. Smith, R.M.Corn, Appl. Spectrosc. 57(11), 320A–332A (2003)CrossRefGoogle Scholar
  8. 8.
    E.Ouellet, L.Lund, E.T.Lagally, Methods Mol. Biol. 949, 473–490 (2013)CrossRefGoogle Scholar
  9. 9.
    A.Einhauer, A.Jungbauer, J.Chromatogr. A 921(1), 25–30 (2001)CrossRefGoogle Scholar
  10. 10.
    F.Bretagnol etal., Plasma Processes Polym. 3, 443–455 (2006)CrossRefGoogle Scholar
  11. 11.
    A.Valsesia etal., Anal. Chem. 80, 7336–40 (2008). doi: 10.1021/ac801021z CrossRefGoogle Scholar
  12. 12.
    J.N. Anker etal., Nat. Mater. 7(6), 442–453 (2008)CrossRefGoogle Scholar
  13. 13.
    X.D. Hoa, A.G.Kirk, M.Tabrizian, Biosen. Bioelectron. 23(2), 151–160 (2007)CrossRefGoogle Scholar
  14. 14.
    J.Homola, Chem. Rev. 108(2), 462–493 (2008)CrossRefGoogle Scholar
  15. 15.
    H.Šípová, J.Homola, Anal. Chim. Acta 773, 9–23 (2013)CrossRefGoogle Scholar
  16. 16.
    C.Situ etal., Trends Anal. Chem. 29(11), 1305–1315 (2010)CrossRefGoogle Scholar
  17. 17.
    H.Rather, Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer Tracts in Modern Physics, vol. 111(Springer, Berlin/Heidelberg, 1988)Google Scholar
  18. 18.
    W.L. Barnes, J.Opt. A Pure Appl. 8(4), S87–S93 (2006)CrossRefGoogle Scholar
  19. 19.
    E.Kretschmann, H.Raether, Z.Naturforsch. 23A, 2135–2136 (1968)Google Scholar
  20. 20.
    A.Boardman, Electromagnetic Surface Modes (Wiley, NewYork, 1982)Google Scholar
  21. 21.
    S.A. Maier, Plasmonics: Fundamentals and Applications (Springer Science+Business Media LLC, NewYork, 2007)Google Scholar
  22. 22.
    J.Parsons etal., Phys Rev B 79, 073412 (2009). doi: 10.1103/PhysRevB.79.073412 CrossRefGoogle Scholar
  23. 23.
    M.Piliarik etal., Opt. Express 20(1), 672–680 (2012)CrossRefGoogle Scholar
  24. 24.
    K.A. Willets, R.P.Van Duyne, Annu. Rev. Phys. Chem. 58, 267–297 (2007)CrossRefGoogle Scholar
  25. 25.
    T.W. Teperik etal., Opt. Express 14, 11964–11971 (2006)CrossRefGoogle Scholar
  26. 26.
    G.McNay etal., Appl. Spectrosc. 65(8), 825–837 (2011)CrossRefGoogle Scholar
  27. 27.
    K.Kneipp, M.Moskovits, H.Kneipp, Surface-Enhanced Raman Scattering Physics and Applications (Springer, Berlin, 2006)CrossRefGoogle Scholar
  28. 28.
    J.D. Caldwell etal., ACS Nano 5(5), 4046–4055 (2011)CrossRefGoogle Scholar
  29. 29.
    M.Najiminaini etal., Appl. Phys. Lett. 100, 043105 (2012). doi: 10.1063/1.3679173 CrossRefGoogle Scholar
  30. 30.
    J.P. Monteiro etal., Sens. Actuators B Chem. 178, 366–370 (2013)CrossRefGoogle Scholar
  31. 31.
    M.J. Kofke etal., Appl. Phys. Lett. 94, 023104 (2009). doi: 10.1063/1.3067835 CrossRefGoogle Scholar
  32. 32.
    A.Lesuffleur etal., Appl. Phys. Lett. 90, 243110 (2007). doi: 10.1063/1.2747668 CrossRefGoogle Scholar
  33. 33.
    W.A. Murray, S.Astilean, W.L.Barnes, Phys Rev B 69, 165407 (2004). doi: 10.1103/PhysRevB.69.165407C CrossRefGoogle Scholar
  34. 34.
    A.G. Brolo etal., Langmuir 20(12), 4813–4815 (2004)CrossRefGoogle Scholar
  35. 35.
    S.Scarano etal., Biosen. Bioelectron. 25(5), 957–966 (2010)CrossRefGoogle Scholar
  36. 36.
    A.De Leebeeck etal., Anal. Chem. 79(11), 4094–4100 (2007)CrossRefGoogle Scholar
  37. 37.
    H.Im etal., Anal. Chem. 84(4), 1941–1947 (2012)CrossRefGoogle Scholar
  38. 38.
    T.W. Ebbesen etal., Nature 391, 667–669 (1998). doi: 10.1038/35570 CrossRefGoogle Scholar
  39. 39.
    F.J. Garcia-Vidal etal., Rev. Mod. Phys. 82, 729–787 (2010)CrossRefGoogle Scholar
  40. 40.
    K.J. Klein Koerkamp etal., Phys. Rev. Lett. 92, 183901 (2004). doi: 10.1103/PhysRevLett.92.183901 CrossRefGoogle Scholar
  41. 41.
    K.L. Van der Molen etal., Phys Rev B 72, 045421 (2005). doi: 10.1103/PhysRevB.72.045421 CrossRefGoogle Scholar
  42. 42.
    J.Martinez-Perdiguero etal., Procedia Eng. 47, 805–808 (2012)CrossRefGoogle Scholar
  43. 43.
    N.C. Lindquist etal., Ann. Phys. 524(11), 687–696 (2012)CrossRefGoogle Scholar
  44. 44.
    S.Giudicatti etal., Phys. Status Solidi A 207(4), 935–942 (2010)CrossRefGoogle Scholar
  45. 45.
    C.Jian etal., Appl. Surf. Sci. 270, 6(2013)CrossRefGoogle Scholar
  46. 46.
    A.Valsesia etal., J.Phys. D Appl. Phys. 40(8), 2341 (2007)CrossRefGoogle Scholar
  47. 47.
    C.M. Hsu etal., Appl. Phys. Lett. 93, 133109 (2008)CrossRefGoogle Scholar
  48. 48.
    S.Giudicatti etal., J.Opt. Soc. Am.B 29(7), 1641–1647 (2012)CrossRefGoogle Scholar
  49. 49.
    S.Giudicatti, F.Marabelli, P.Pellacani, Plasmonics 8(2), 975–981 (2013)CrossRefGoogle Scholar
  50. 50.
    A.Taflove, S.C.Hagness, Computational Electrodynamics—The FDTD Method, 2nd edn. (Artech House, Norwood, 2000). A commercial software, Lumerical FDTD (www.lumerical.com), was usedGoogle Scholar
  51. 51.
    B.Bottazzi etal., J.Biomed. Opt. 19, 017006 (2014)CrossRefGoogle Scholar
  52. 52.
    T.Campbell, G.Kim, Biomaterials 28(15), 2380–2392 (2007)CrossRefGoogle Scholar
  53. 53.
    Xie et al., Solid State Commun. 150, 2162–2167 (2010). doi: 10.1016/j.ssc.2010.09.004

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Franco Marabelli
    • 1
    Email author
  • Andrea Valsesia
    • 2
    • 3
  • Silvia Giudicatti
    • 1
    • 4
  • Lucia Fornasari
    • 1
  • Paola Pellacani
    • 2
    • 5
  • Ana Frangolho
    • 2
  1. 1.Physics DepartmentUniversity of PaviaPaviaItaly
  2. 2.Plasmore s.r.l.RancoItaly
  3. 3.Institute for Health and Consumer Protection, European Commission, Joint Research CenterIspraItaly
  4. 4.Institute for Integrative Nanosciences, IFW DresdenDresdenGermany
  5. 5.Department of Applied PhysicsUniversidad Autònoma de MadridMadridSpain

Personalised recommendations