Advertisement

Towards a General Model to Handle Multi-enabledness in Time Petri Nets

  • Abdelkrim AbdelliEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 346)

Abstract

This paper deals with multi enabledness in Time Petri nets (TPN). Such a semantics allows one to implement multiple-server paradigm which is proved to be more expressive than the single-server one. However, different semantics and policies were defined in the literature to handle multi-enabledness, and hence many TPN models were considered. Two main concepts were already introduced: the threshold and the age token based semantics. In order to provide to the designer more capabilities in the modeling and the analysis of complex systems, we propose in this paper a first attempt to gather both semantics in a same framework. In our model, called general Time Petri Net (G − TPN), each transition of the network is associated with a specific firing semantics. The formalization of the latter is then given by associating time constraints with firing points, rather than with transitions and tokens. This allows one to express easily the semantics of the model and to reduce the amount of data in the definition of a state.

Keywords

Petri nets Multi-enabledness Multi-server semantics Age semantics Threshold semantics Firing points 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ajmone Marsan, M., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Modelling with Generalized Stochastic Petri Nets. Series in parallel computing. Wiley (1995)Google Scholar
  2. 2.
    Ajmone Marsan, M., Balbo, G., Bobbio, A., Chiola, G., Conte, G., Cumani, A.: The effect of execution policies on the semantics and analysis of stochastic Petri nets. IEEE Transations on Software Engineering 15(7), 832–846 (1989)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Abdelli, A.: Age semantics based state space computation of Time Petri Nets. In: IEEE FMI workshop of IRI, San fransisco USA (August 2014)Google Scholar
  4. 4.
    Abdelli, A.: Efficient computation of quantitative properties of real-time preemptive systems. IJCCBS 3(3), 187–209 (2012)CrossRefGoogle Scholar
  5. 5.
    Abdelli, A., Badache, N.: Towards Building the State Class Graph of the TSPN Model. Fundamenta Informaticae 86(4), 371–409 (2008)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Bérard, B., Cassez, F., Haddad, S., Lime, D., Roux, O.H.: Comparison of Different Semantics for Time Petri Nets. In: Peled, D.A., Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707, pp. 293–307. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Berthomieu, B., Diaz, M.: Modeling and verification of time dependant systems using Time Petri Nets. IEEE TSE 17(3), 259–273 (1991)MathSciNetGoogle Scholar
  8. 8.
    Berthomieu, B.: La méthode des classes d’états pour l’analyse des réseaux temporels - mise en oeuvre, extension à la multi-sensibilisation. In: Modélisation des Systèmes Réactifs, pp. 275–290. Hermes, Toulouse (2001)Google Scholar
  9. 9.
    Boucheneb, H., Lime, D., Roux, O.H.: On Multi-enabledness in Time Petri Nets. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 130–149. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Boucheneb, H., Berthelot, G.: Toward a simplified building of Time Petri Nets reachability graph. In: PNPM 1993, Toulouse, France, pp. 46–55 (October 1993)Google Scholar
  11. 11.
    Boucheneb, H., Bullich, A., Roux, O.H.: FIFO Time Petri Nets for conflicts handling. In: 11th International Workshop on Discrete Event Systems, IFAC, Mexico (2012)Google Scholar
  12. 12.
    Boyer, M., Diaz, M.: Multiple enabledness of transitions in time Petri nets. In: Proc. of the 9th IEEE International Workshop on Petri Nets and Performance Models, Aachen, Germany, IEEE Computer Society (2001)Google Scholar
  13. 13.
    Cerone, A., Maggiolo-Schettini, A.: Timed based expressivity of time Petri nets for system specification. Theoretical Computer Science 216, 1–53 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Khansa, W., Denat, J., Collart-Dutilleul, S.P.: Time Petri nets for manufacturing systems. In: Proc. of WODES 1996, Edimburgh, UK, pp. 94–102 (1996)Google Scholar
  15. 15.
    Merlin, P.M.: A study of the recoverability of computing systems. PhD thesis, Department of Information and Computer Science, University of California, Irvine, CA (1974)Google Scholar
  16. 16.
    Vicario, E.: Static Analysis and Dynamic Steering of Time-Dependent Systems. IEEE Trans. Software Eng. 27(8), 728–748 (2001)CrossRefGoogle Scholar
  17. 17.
    Walter, B.: Timed net for modeling and analysing protocols with time. In: Proceedings of the IFIP Conference on Protocol Specification Testing and Verification, North-Holland (1983)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.LSI Laboratory- Computer Science DepartmentUSTHB UniversityAlgiersAlgeria

Personalised recommendations