A CEGAR Tool for the Reachability Analysis of PLC-Controlled Plants Using Hybrid Automata

  • Johanna NellenEmail author
  • Erika Ábrahám
  • Benedikt Wolters
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 346)


In this paper we address the safety analysis of chemical plants controlled by programmable logic controllers (PLCs). We consider sequential function charts (SFCs) for the programming of the PLCs, extended with the specification of the dynamic plant behavior. The resulting hybrid SFC models can be transformed to hybrid automata, opening the way to the application of advanced techniques for their reachability analysis. However, the hybrid automata models are often too large to be analyzed. To keep the size of the models moderate, we propose a counterexample-guided abstraction refinement (CEGAR) approach, which starts with the purely discrete SFC model of the controller and extends it with those parts of the dynamic behavior, which are relevant for proving or disproving safety. Our algorithm can deal with urgent locations and transitions, and non-convex invariants. We integrated the CEGAR approach in the analysis tool spaceex and present an example.


hybrid systems reachability analysis CEGAR verification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theoretical Computer Science 138, 3–34 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Alur, R., Dang, T., Ivančić, F.: Counter-example guided predicate abstraction of hybrid systems. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 208–223. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Asarin, E., Dang, T., Maler, O.: The d/dt tool for verification of hybrid systems. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 365–770. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Balluchi, A., Casagrande, A., Collins, P., Ferrari, A., Villa, T., Sangiovanni-Vincentelli, A.L.: Ariadne: A framework for reachability analysis of hybrid automata. In: Proc. of MTNS 2006 (2006)Google Scholar
  5. 5.
    Baresi, L., Carmeli, S., Monti, A., Pezzè, M.: PLC programming languages: A formal approach. In: Proc. of Automation 1998. ANIPLA (1998)Google Scholar
  6. 6.
    Bauer, N.: Formale Analyse von Sequential Function Charts. Ph.D. thesis, Universität Dortmund (2004)Google Scholar
  7. 7.
    Bauer, N., Huuck, R., Lukoschus, B., Engell, S.: A unifying semantics for sequential function charts. In: Ehrig, H., Damm, W., Desel, J., Große-Rhode, M., Reif, W., Schnieder, E., Westkämper, E. (eds.) INT 2004. LNCS, vol. 3147, pp. 400–418. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Bogomolov, S., Donzé, A., Frehse, G., Grosu, R., Johnson, T.T., Ladan, H., Podelski, A., Wehrle, M.: Abstraction-based guided search for hybrid systems. In: Bartocci, E., Ramakrishnan, C.R. (eds.) SPIN 2013. LNCS, vol. 7976, pp. 117–134. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: An analyzer for non-linear hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 258–263. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Clarke, E., Fehnker, A., Han, Z., Krogh, B.: Abstraction and counterexample-guided refinement in model checking of hybrid systems. Int. Journal of Foundations of Computer Science 14(04), 583–604 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Clarke, E., Fehnker, A., Han, Z., Krogh, B., Stursberg, O., Theobald, M.: Verification of hybrid systems based on counterexample-guided abstraction refinement. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 192–207. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 154–169. Springer, Heidelberg (2000)Google Scholar
  13. 13.
    Dierks, H., Kupferschmid, S., Larsen, K.: Automatic abstraction refinement for timed automata. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 114–129. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Engell, S., Lohmann, S., Stursberg, O.: Verification of embedded supervisory controllers considering hybrid plant dynamics. Int. Journal of Software Engineering and Knowledge Engineering 15(2), 307–312 (2005)CrossRefGoogle Scholar
  15. 15.
    Fehnker, A., Clarke, E., Jha, S., Krogh, B.: Refining abstractions of hybrid systems using counterexample fragments. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 242–257. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R., Girard, A., Dang, T., Maler, O.: SpaceEx: Scalable verification of hybrid systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Frehse, G.: PHAVer: Algorithmic verification of hybrid systems past HyTech. Int. Journal on Software Tools for Technology Transfer 10, 263–279 (2008)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Frey, G., Litz, L.: Formal methods in PLC programming. In: Proc. of SMC 2000, vol. 4, pp. 2431–2436. IEEEXplore (2000)Google Scholar
  19. 19.
    Girard, A., Pappas, G.J.: Approximation metrics for discrete and continuous systems. TAC 2007 52(5), 782–798 (2007)Google Scholar
  20. 20.
    Hassapis, G., Kotini, I., Doulgeri, Z.: Validation of a SFC software specification by using hybrid automata. In: Proc. of INCOM 1998, pp. 65–70. Pergamon (1998)Google Scholar
  21. 21.
    Henzinger, T.A., Ho, P., Wong-Toi, H.: Hytech: A model checker for hybrid systems. Int. Journal on Software Tools for Technology Transfer 1(1-2), 110–122 (1997)CrossRefzbMATHGoogle Scholar
  22. 22.
    Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid automata? Journal of Computer and System Sciences 57(1), 94–124 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Herceg, M., Kvasnica, M., Jones, C.N., Morari, M.: Multi-Parametric Toolbox 3.0. In: Proc. of the ECC 2013, Zürich, Switzerland, pp. 502–510 (2013)Google Scholar
  24. 24.
    Int. Electrotechnical Commission: Programmable Controllers, Part 3: Programming Languages, 61131–61133 (2003)Google Scholar
  25. 25.
    Jha, S.K., Krogh, B.H., Weimer, J.E., Clarke, E.M.: Reachability for linear hybrid automata using iterative relaxation abstraction. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 287–300. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  26. 26.
    Kurzhanskiy, A., Varaiya, P.: Ellipsoidal toolbox. Tech. rep., EECS, UC Berkeley (2006)Google Scholar
  27. 27.
    Lukoschus, B.: Compositional Verification of Industrial Control Systems - Methods and Case Studies. Ph.D. thesis, Christian-Albrechts-Universität zu Kiel (2005)Google Scholar
  28. 28.
    Minopoli, S., Frehse, G.: Non-convex invariants and urgency conditions on linear hybrid automata. In: Legay, A., Bozga, M. (eds.) FORMATS 2014. LNCS, vol. 8711, pp. 176–190. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  29. 29.
    Mitchell, I., Tomlin, C.: Level set methods for computation in hybrid systems. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 310–323. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  30. 30.
    Nellen, J., Ábrahám, E.: Hybrid sequential function charts. In: Proc. of MBMV 2012, pp. 109–120. Verlag Dr. Kovac (2012)Google Scholar
  31. 31.
    Nellen, J., Ábrahám, E.: A CEGAR approach for the reachability analysis of PLC-controlled chemical plants. In: Proc. of FMi 2014 (2014)Google Scholar
  32. 32.
    Platzer, A., Quesel, J.-D.: KeYmaera: A hybrid theorem prover for hybrid systems (System description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 171–178. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  33. 33.
    Prabhakar, P., Duggirala, P.S., Mitra, S., Viswanathan, M.: Hybrid automata-based CEGAR for rectangular hybrid systems. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 48–67. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  34. 34.
    Segelken, M.: Abstraction and counterexample-guided construction of ω-automata for model checking of step-discrete linear hybrid models. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 433–448. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Johanna Nellen
    • 1
    Email author
  • Erika Ábrahám
    • 1
  • Benedikt Wolters
    • 1
  1. 1.RWTH Aachen UniversityAachenGermany

Personalised recommendations