Any-Time Knowledge Revision and Inconsistency Handling

  • Éric GrégoireEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 346)


We propose and experiment a practical multi-level approach to maintain contradiction-free knowledge when some incoming additional information that can contradict the preexisting knowledge must be taken into account. The approach implements an any-time strategy that triggers successive reasoning paradigms ranging from credulous to computationally more intensive forms of skepticism about conflicting information. It makes use of recent dramatic computational progress in constraint satisfaction techniques for finite domains and Boolean-related search and reasoning. Interestingly, the structure of the approach and the involved techniques also apply for the more general issue of handling contradictory knowledge.


artificial intelligence belief and knowledge revision SAT credulous and skeptical reasonings 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Béziau, J.-Y., Carnielli, W., Gabbay, D.M.: Handbook of Paraconsistency. Studies in Logic. College Publications (2007)Google Scholar
  2. 2.
    Ginsberg, M.L.: Readings in nonmonotonic reasoning. M. Kaufmann Publishers (1987)Google Scholar
  3. 3.
    Fermé, E.L., Hansson, S.O.: AGM 25 years - twenty-five years of research in belief change. J. Philosophical Logic 40(2), 295–331 (2011)CrossRefzbMATHGoogle Scholar
  4. 4.
    Grégoire, É., Konieczny, S.: Logic-based approaches to information fusion. Information Fusion 7(1), 4–18 (2006)CrossRefGoogle Scholar
  5. 5.
    Zhang, D., Grégoire, É.: The landscape of inconsistency: a perspective. Int. J. Semantic Computing 5(3), 235–256 (2011)Google Scholar
  6. 6.
    Rossi, F., Beek, P.v., Walsh, T.: Handbook of Constraint Programming. Elsevier (2006)Google Scholar
  7. 7.
    Lecoutre, C.: Constraint Networks: Techniques and Algorithms. Wiley (2009)Google Scholar
  8. 8.
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1993)Google Scholar
  9. 9.
    Marques-Silva, J., Janota, M.: On the query complexity of selecting few minimal sets. Electronic Colloquium on Computational Complexity (ECCC) 21, 31 (2014)Google Scholar
  10. 10.
    Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complexity classes. Journal of Computer and System Sciences 43(3), 425 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Papadimitriou, C.H., Wolfe, D.: The complexity of facets resolved. Journal of Computer and System Sciences 37(1), 2–13 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Eiter, T., Gottlob, G.: On the complexity of propositional knowledge base revision, updates, and counterfactuals. Artificial Intelligence 57(2-3), 227–270 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Belov, A., Marques-Silva, J.: Accelerating MUS extraction with recursive model rotation. In: Proceedings of the International Conference on Formal Methods in Computer-Aided Design (FMCAD 2011), pp. 37–40 (2011)Google Scholar
  14. 14.
    Marques-Silva, J., Heras, F., Janota, M., Previti, A., Belov, A.: On computing minimal correction subsets. In: Proceedings of the 23rd International Joint Conference on Artificial Intelligence, IJCAI 2013 (2013)Google Scholar
  15. 15.
    Liffiton, M.H., Malik, A.: Enumerating infeasibility: Finding multiple mUSes quickly. In: Gomes, C., Sellmann, M. (eds.) CPAIOR 2013. LNCS, vol. 7874, pp. 160–175. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Lagniez, J.-M., Biere, A.: Factoring out assumptions to speed up MUS extraction. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 276–292. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  17. 17.
    Grégoire, É., Lagniez, J.-M., Mazure, B.: An experimentally efficient method for (MSS,CoMSS) partitioning. In: Proceedings of the 28th Conference on Artificial Intelligence (AAAI 2014), pp. 2666–2673 (2014)Google Scholar
  18. 18.
    Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Reiter, R.: A logic for default reasoning. Artificial Intelligence 13(1-2), 81–132 (1980)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Grégoire, É., Mazure, B., Piette, C.: Boosting a complete technique to find MSS and MUS thanks to a local search oracle. In: International Joint Conference on Artificial Intelligence (IJCAI 2007), pp. 2300–2305 (2007)Google Scholar
  21. 21.
    Hamscher, W., Console, L., de Kleer, J.: Readings in Model-Based Diagnosis. Morgan Kaufmann (1992)Google Scholar
  22. 22.
    Feldman, A., Kalech, M., Provan, G.: Proceedings of the 24th International Workshop on Principles of Diagnosis (DX-2013) (Electronic proceedings) (2013),
  23. 23.
    Kautz, H.A., Selman, B.: Pushing the envelope: Planning, propositional logic and stochastic search. In: Proceedings of the Thirteenth National Conference on Artificial Intelligence and Eighth Innovative Applications of Artificial Intelligence Conference (AAAI 1996), vol. 2, pp. 1194–1201 (1996)Google Scholar
  24. 24.
    Belov, J.A., Marques-Silva: MUSer2: An efficient MUS extractor, system description. Journal on Satisfiability, Boolean Modeling and Computation (2012)Google Scholar
  25. 25.
    Doyle, J.: A truth maintenance system. Artificial Intelligence 12(3), 231–272 (1979)CrossRefMathSciNetGoogle Scholar
  26. 26.
    de Kleer, J.: An assumption-based TMS. Artificial Intelligence 28(2), 127–162 (1986)CrossRefGoogle Scholar
  27. 27.
    Grégoire, É., Lagniez, J.-M., Mazure, B.: Questioning the importance of WCORE-like minimization steps in MUC-finding algorithms. In: Proceedings of the IEEE 25th International Conference on Tools with Artificial Intelligence (ICTAI 2013), pp. 923–930 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.CRIL, Université d’Artois & CNRSLens CedexFrance

Personalised recommendations