Skip to main content

Abstract

Patients whose cancer is detected early are much more likely to have a positive prognosis and outcome. Nanoflares hold promise as a practical diagnostic platform for the early detection of cancer markers in living cells. These probes are based on spherical nucleic acid (SNAs) and are typically composed of gold nanoparticle cores and densely packed and highly oriented oligonucleotide shells; these sequences are complementary to specific mRNA targets and are hybridized to fluorophore-labeled reporter strands. Nanoflares take advantage of the highly efficient fluorescence quenching properties of gold, the rapid cellular uptake of SNAs that occurs without the use of transfection agents, and the enzymatic stability of such constructs to report a highly sensitive and specific signal in the presence of intracellular target mRNA. In this chapter, we will focus on the synthesis, characterization, and diagnostic applications of nanoflares as they relate to cancer markers.

Pratik S. Randeria and William E. Briley contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Edwards BK, Noone A-M, Mariotto AB, Simard EP, Boscoe FP, Henley SJ, Jemal A, Cho H, Anderson RN, Kohler BA, Eheman CR, Ward EM (2014) Annual Report to the Nation on the status of cancer, 1975−2010, featuring prevalence of comorbidity and impact on survival among persons with lung, colorectal, breast, or prostate cancer. Cancer 120:1290–1314

    Article  PubMed Central  PubMed  Google Scholar 

  2. Almendro V, Marusyk A, Polyak K (2013) Cellular heterogeneity and molecular evolution in cancer. Annu Rev Pathol 8:277–302

    Article  CAS  PubMed  Google Scholar 

  3. Burrell RA, McGranahan N, Bartek J, Swanton C (2013) The causes and consequences of genetic heterogeneity in cancer evolution. Nature 501:338–345

    Article  CAS  PubMed  Google Scholar 

  4. Meacham CE, Morrison SJ (2013) Tumour heterogeneity and cancer cell plasticity. Nature 501:328–337

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Briley WE, Halo TL, Randeria PS, Alhasan AH, Auyeung E, Hurst SJ, Mirkin CA (2012) Biochemistry and biomedical applications of spherical nucleic acids (SNAs). In: Nanomaterials for biomedicine. American Chemical Society, Washington, DC

    Google Scholar 

  6. Elsabahy M, Wooley KL (2012) Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev 41:2545–2561

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Seferos DS, Giljohann DA, Hill HD, Prigodich AE, Mirkin CA (2007) Nano-flares: probes for transfection and mRNA detection in living cells. J Am Chem Soc 129:15477–15479

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Cutler JI, Auyeung E, Mirkin CA (2012) Spherical nucleic acids. J Am Chem Soc 134:1376–1391

    Article  CAS  PubMed  Google Scholar 

  9. Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2010) Gold nanoparticles for biology and medicine. Angew Chem Int Ed 49:3280–3294

    Article  CAS  Google Scholar 

  10. Rosi NL, Giljohann DA, Thaxton CS, Lytton-Jean AKR, Han MS, Mirkin CA (2006) Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 312:1027–1030

    Article  CAS  PubMed  Google Scholar 

  11. Prigodich AE, Seferos DS, Massich MD, Giljohann DA, Lane BC, Mirkin CA (2009) Nano-flares for mRNA regulation and detection. ACS Nano 3:2147–2152

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Massich MD, Giljohann DA, Seferos DS, Ludlow LE, Horvath CM, Mirkin CA (2009) Regulating immune response using polyvalent nucleic acid—gold nanoparticle conjugates. Mol Pharm 6:1934–1940

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Lytton-Jean AKR, Mirkin CA (2005) A thermodynamic investigation into the binding properties of DNA functionalized gold nanoparticle probes and molecular fluorophore probes. J Am Chem Soc 127:12754–12755

    Article  CAS  PubMed  Google Scholar 

  14. Lee J-S, Lytton-Jean AKR, Hurst SJ, Mirkin CA (2007) Silver nanoparticle—oligonucleotide conjugates based on DNA with triple cyclic disulfide moieties. Nano Lett 7:2112–2115

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609

    Article  CAS  PubMed  Google Scholar 

  16. Cutler JI, Zheng D, Xu X, Giljohann DA, Mirkin CA (2010) Polyvalent oligonucleotide iron oxide nanoparticle “Click” conjugates. Nano Lett 10:1477–1480

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Zhang C, Macfarlane RJ, Young KL, Choi CHJ, Hao L, Auyeung E, Liu G, Zhou X, Mirkin CA (2013) A general approach to DNA-programmable atom equivalents. Nat Mater 12:741–746

    Article  CAS  PubMed  Google Scholar 

  18. Young KL, Scott AW, Hao L, Mirkin SE, Liu G, Mirkin CA (2012) Hollow spherical nucleic acids for intracellular gene regulation based upon biocompatible silica shells. Nano Lett 12:3867–3871

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Calabrese CM, Merkel TJ, Briley WE, Randeria PS, Narayan SP, Rouge JL, Walker DA, Scott AW, Mirkin CA (2014) Biocompatible infinite-coordination-polymer nanoparticle-nucleic-acid conjugates for antisense gene regulation. Angew Chem Int Ed Engl 54(2):476–480

    Google Scholar 

  20. Cutler JI, Zhang K, Zheng D, Auyeung E, Prigodich AE, Mirkin CA (2011) Polyvalent nucleic acid nanostructures. J Am Chem Soc 133:9254–9257

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Banga RJ, Chernyak N, Narayan SP, Nguyen ST, Mirkin CA (2014) Liposomal spherical nucleic acids. J Am Chem Soc 136:9866–9869

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Frens G (1973) Controlled nucleation for regulation of particle-size in monodisperse gold suspensions. Nat Phys Sci 241:20–22

    Article  CAS  Google Scholar 

  23. Brust M, Schiffrin DJ, Bethell D, Kiely CJ (1995) Novel gold-dithiol nano-networks with non-metallic electronic properties. Adv Mater 7:795–797

    Article  CAS  Google Scholar 

  24. Letsinger RL, Elghanian R, Viswanadham G, Mirkin CA (2000) Use of a steroid cyclic disulfide anchor in constructing gold nanoparticle—oligonucleotide conjugates. Bioconjug Chem 11:289–291

    Article  CAS  PubMed  Google Scholar 

  25. Giljohann DA, Seferos DS, Prigodich AE, Patel PC, Mirkin CA (2009) Gene regulation with polyvalent siRNA—nanoparticle conjugates. J Am Chem Soc 131:2072–2073

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Hao L, Patel PC, Alhasan AH, Giljohann DA, Mirkin CA (2011) Nucleic acid-gold nanoparticle conjugates as mimics of microRNA. Small 7:3158–3162

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Rouge JL, Hao L, Wu XA, Briley WE, Mirkin CA (2014) Spherical nucleic acids as a divergent platform for synthesizing RNA–nanoparticle conjugates through enzymatic ligation. ACS Nano 8:8837–8843

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Patel PC, Giljohann DA, Seferos DS, Mirkin CA (2008) Peptide antisense nanoparticles. Proc Natl Acad Sci 105:17222–17226

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Seferos DS, Giljohann DA, Rosi NL, Mirkin CA (2007) Locked nucleic acid-nanoparticle conjugates. ChemBioChem 8:1230–1232

    Article  CAS  PubMed  Google Scholar 

  30. Hill HD, Millstone JE, Banholzer MJ, Mirkin CA (2009) The role radius of curvature plays in thiolated oligonucleotide loading on gold nanoparticles. ACS Nano 3:418–424

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Hurst SJ, Lytton-Jean AKR, Mirkin CA (2006) Maximizing DNA loading on a range of gold nanoparticle sizes. Anal Chem 78:8313–8318

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Choi CHJ, Hao L, Narayan SP, Auyeung E, Mirkin CA (2013) Mechanism for the endocytosis of spherical nucleic acid nanoparticle conjugates. Proc Natl Acad Sci 110:7625–7630

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Patel PC, Giljohann DA, Daniel WL, Zheng D, Prigodich AE, Mirkin CA (2010) Scavenger receptors mediate cellular uptake of polyvalent oligonucleotide-functionalized gold nanoparticles. Bioconjug Chem 21:2250–2256

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Nguyen J, Szoka FC (2012) Nucleic acid delivery: the missing pieces of the puzzle? Acc Chem Res 45:1153–1162

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Giljohann DA, Seferos DS, Patel PC, Millstone JE, Rosi NL, Mirkin CA (2007) Oligonucleotide loading determines cellular uptake of DNA-modified gold nanoparticles. Nano Lett 7:3818–3821

    Article  CAS  PubMed  Google Scholar 

  36. Seferos DS, Prigodich AE, Giljohann DA, Patel PC, Mirkin CA (2008) Polyvalent DNA nanoparticle conjugates stabilize nucleic acids. Nano Lett 9:308–311

    Article  Google Scholar 

  37. Zheng D, Giljohann DA, Chen DL, Massich MD, Wang X-Q, Iordanov H, Mirkin CA, Paller AS (2012) Topical delivery of siRNA-based spherical nucleic acid nanoparticle conjugates for gene regulation. Proc Natl Acad Sci 109:11975–11980

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Long H, Kudlay A, Schatz GC (2006) Molecular dynamics studies of ion distributions for DNA duplexes and DNA clusters: salt effects and connection to DNA melting. J Phys Chem B 110:2918–2926

    Article  CAS  PubMed  Google Scholar 

  39. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277:1078–1081

    Article  CAS  PubMed  Google Scholar 

  40. Jensen SA, Day ES, Ko CH, Hurley LA, Luciano JP, Kouri FM, Merkel TJ, Luthi AJ, Patel PC, Cutler JI, Daniel WL, Scott AW, Rotz MW, Meade TJ, Giljohann DA, Mirkin CA, Stegh AH (2013) Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma. Sci Transl Med 5:209ra152

    Google Scholar 

  41. Gall JG, Pardue ML (1969) Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proc Natl Acad Sci USA 63:378–383

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Santangelo PJ, Nix B, Tsourkas A, Bao G (2004) Dual FRET molecular beacons for mRNA detection in living cells. Nucleic Acids Res 32:e57

    Google Scholar 

  43. Prigodich AE, Lee O-S, Daniel WL, Seferos DS, Schatz GC, Mirkin CA (2010) Tailoring DNA structure to increase target hybridization kinetics on surfaces. J Am Chem Soc 132:16296

    Google Scholar 

  44. Nolan T, Hands RE, Bustin SA (2006) Quantification of mRNA using real-time RT-PCR. Nat Protoc 1:1559–1582

    Article  CAS  PubMed  Google Scholar 

  45. EMD Millipore (2014) SmartFlare RNA detection probes. http://www.emdmillipore.com/smartflare

  46. Peng X-H, Cao Z-H, Xia J-T, Carlson GW, Lewis MM, Wood WC, Yang L (2005) Real-time detection of gene expression in cancer cells using molecular beacon imaging: new strategies for cancer research. Cancer Res 65:1909–1917

    Article  CAS  PubMed  Google Scholar 

  47. Prigodich AE, Randeria PS, Briley WE, Kim NJ, Daniel WL, Giljohann DA, Mirkin CA (2012) Multiplexed nanoflares: mRNA detection in live cells. Anal Chem 84:2062–2066

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Li N, Chang C, Pan W, Tang B (2012) A multicolor nanoprobe for detection and imaging of tumor-related mRNAs in living cells. Angew Chem Int Ed 51:7426–7430

    Article  CAS  Google Scholar 

  49. Pan W, Zhang T, Yang H, Diao W, Li N, Tang B (2013) Multiplexed detection and imaging of intracellular mRNAs using a four-color nanoprobe. Anal Chem 85:10581–10588

    Article  CAS  PubMed  Google Scholar 

  50. Riethdorf S, Fritsche H, Müller V, Rau T, Schindlbeck C, Rack B, Janni W, Coith C, Beck K, Jänicke F, Jackson S, Gornet T, Cristofanilli M, Pantel K (2007) Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the cell search system. Clin Cancer Res 13:920–928

    Article  CAS  PubMed  Google Scholar 

  51. Yu M, Stott S, Toner M, Maheswaran S, Haber DA (2011) Circulating tumor cells: approaches to isolation and characterization. J Cell Biol 192:373–382

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Halo TL, McMahon KM, Angeloni NL, Xu Y, Wang W, Chinen AB, Malin D, Strekalova E, Cryns VL, Cheng C, Mirkin CA, Thaxton CS (2014) NanoFlares for the detection, isolation, and culture of live tumor cells from human blood. Proc Natl Acad Sci USA 111:17104–17109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Noble PB, Cutts JH (1967) Separation of blood leukocytes by Ficoll gradient. Can Vet J 8:110–111

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chad A. Mirkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Randeria, P.S., Briley, W.E., Chinen, A.B., Guan, C.M., Petrosko, S.H., Mirkin, C.A. (2015). Nanoflares as Probes for Cancer Diagnostics. In: Mirkin, C., Meade, T., Petrosko, S., Stegh, A. (eds) Nanotechnology-Based Precision Tools for the Detection and Treatment of Cancer. Cancer Treatment and Research, vol 166. Springer, Cham. https://doi.org/10.1007/978-3-319-16555-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16555-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16554-7

  • Online ISBN: 978-3-319-16555-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics