Skip to main content

Evolving Robot Controllers for Structured Environments Through Environment Decomposition

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9028))

Included in the following conference series:

  • 1852 Accesses

Abstract

In this paper we aim to develop a controller that allows a robot to traverse an structured environment. The approach we use is to decompose the environment into simple sub-environments that we use as basis for evolving the controller. Specifically, we decompose a narrow corridor environment into four different sub-environments and evolve controllers that generalize to traverse two larger environments composed of the sub-environments. We also study two strategies for presenting the sub-environments to the evolutionary algorithm: all sub-environments at the same time and in sequence. Results show that by using a sequence the evolutionary algorithm can find a controller that performs well in all sub-environments more consistently than when presenting all sub-environments together. We conclude that environment decomposition is an useful approach for evolving controllers for structured environments and that the order in which the decomposed sub-environments are presented in sequence impacts the performance of the evolutionary algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Crespi, A., Lachat, D., Pasquier, A., Ijspeert, A.J.: Controlling swimming and crawling in a fish robot using a central pattern generator. Auton. Robots 25(1–2), 3–13 (2008)

    Article  Google Scholar 

  2. Lee, W.P., Hallam, J., Lund, H.H.: Learning complex robot behaviours by evolutionary computing with task decomposition. In: Birk, A., Demiris, J. (eds.) Learning Robots. LNCS, vol. 1545, pp. 155–172. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  3. Whiteson, S., Kohl, N., Miikkulainen, R., Stone, P.: Evolving soccer keepaway players through task decomposition. Mach. Learn. 59(1–2), 5–30 (2005)

    Article  Google Scholar 

  4. Lessin, D., Fussell, D., Miikkulainen, R.: Open-ended behavioral complexity for evolved virtual creatures. In: Proceedings of the GECCO 2013, p. 335. ACM Press, New York, USA (2013)

    Google Scholar 

  5. Rossi, C., Eiben, A.E.: Simultaneous versus incremental learning of multiple skills by modular robots. Evol. Intell. 7(2), 119–131 (2014)

    Article  Google Scholar 

  6. Stone, P., Veloso, M.M.: Layered learning. In: de Mantaras, R.L., Plaza, E. (eds.) ECML 2000. LNCS (LNAI), vol. 1810, pp. 369–381. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  7. Gomez, F., Miikkulainen, R.: Incremental evolution of complex general behavior. Adapt. Behav. 5(3–4), 317–342 (1997)

    Article  Google Scholar 

  8. Bongard, J.: Behavior chaining: incremental behavioral integration for evolutionary robotics. Artif. Life XI Number 1976, 64–71 (2008)

    Google Scholar 

  9. Auerbach, J., Bongard, J.C.: How robot morphology and training order affect the learning of multiple behaviors. In: IEEE Congress on CEC 2009, pp. 39–46, Trondheim, May 2009

    Google Scholar 

  10. Bongard, J.C.: Morphological and environmental scaffolding synergize when evolving robot controllers. In: GECCO 2011 1st workshop on evolutionary computation for designing generic algorithms, p. 179. ACM Press, Dublin, Ireland (2011)

    Google Scholar 

  11. Mukosaka, N., Tanev, I., Shimohara, K.: Performance of incremental genetic programming on adaptability of snake-like Robot. IES2013 24, 152–157 (2013)

    Google Scholar 

  12. Kuyucu, T., Tanev, I., Shimohara, K.: Genetic transposition inspired incremental genetic programming for efficient coevolution of locomotion and sensing of simulated snake-like robot. In: Proceedings of the Eleventh European Conference on the Synthesis and Simulation of Living Systems ECAL-2011, pp. 439–446. MIT Press, Paris (2011)

    Google Scholar 

  13. Song, G.B., Cho, S.B.: Combining incrementally evolved neural networks based on cellular automata for complex adaptive behaviors. In: First IEEE Symposium on Combinations of Evolutionary Computation and Neural Networks, pp. 121–129. IEEE, San Antonio, TX (2000)

    Google Scholar 

  14. Mouret, J.-B., Doncieux, S.: Incremental Evolution of animats’ behaviors as a multi-objective optimization. In: Asada, M., Hallam, J.C.T., Meyer, J.-A., Tani, J. (eds.) SAB 2008. LNCS (LNAI), vol. 5040, pp. 210–219. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Rohmer, E., Singh, S.P.N., Freese, M.: V-REP: A versatile and scalable robot simulation framework. In: 26th IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2013), pp. 1321–1326. IEEE, Tokyo, November 2013

    Google Scholar 

  16. Jantapremjit, P., Austin, D.: Design of a modular self-reconfigurable robot. In: Australian Conference on Robotics and Automation. Citeseer, Sydney, Australia (2001)

    Google Scholar 

  17. Moreno, R., Gomez, J.: Simple chain type modular robot hardware (2011). https://www.youtube.com/watch?v=x6UQfC4KALA

  18. Storn, R., Price, K.: Differential evolutiona simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  19. Caamano, P., Tedin, R., Paz-Lopez, A., Becerra, J.A.: JEAF: A Java Evolutionary Algorithm Framework. In: IEEE Congress on Evolutionary Computation, CEC 2010, pp. 1–8, December 2007. IEEE, Barcelona, July 2010

    Google Scholar 

  20. Jakobi, N.: Evolutionary robotics and the radical envelope-of-noise hypothesis. Adapt. Behav. 6(2), 325–368 (1997)

    Article  Google Scholar 

Download references

Acknowledgments

This project is supported in part by grant 23418 of the program “Programa nacional de proyectos para el fortalecimiento de la investigación, la creación y la innovación en posgrados en la Universidad Nacional de Colombia 2013” of Universidad Nacional de Colombia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Moreno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Moreno, R., Faiña, A., Støy, K. (2015). Evolving Robot Controllers for Structured Environments Through Environment Decomposition. In: Mora, A., Squillero, G. (eds) Applications of Evolutionary Computation. EvoApplications 2015. Lecture Notes in Computer Science(), vol 9028. Springer, Cham. https://doi.org/10.1007/978-3-319-16549-3_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16549-3_64

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16548-6

  • Online ISBN: 978-3-319-16549-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics